6.设A与B为4阶矩阵
设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则( )
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.
设A,B均为n阶实对称矩阵,证明:A与B相似
大学线性代数可逆矩阵设A,B均为n阶矩阵.证明:分块矩阵(A B)是可逆矩阵当且仅当A+B与A-B均为可逆矩阵B A
线代,设3阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,则det(-B^(-1))=( ).A.- 24;
设A为n阶正定矩阵,B是与A合同的n阶矩阵,证明B也是正定矩阵.
矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换
设A,B均为n阶矩阵,r(A)
设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵
设A,B为n阶矩阵,且A为对称矩阵,证明B^TAB也是对称矩阵
分块矩阵 设A为n阶非奇异矩阵,a为n×1矩阵,b为常数