作业帮 > 数学 > 作业

如图a,在RT△ABC和RT△DEF中,∠ACB=∠DFE=90°,AC=6cm,BC=8cm,EF=5cm,DF=12

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 19:26:40
如图a,在RT△ABC和RT△DEF中,∠ACB=∠DFE=90°,AC=6cm,BC=8cm,EF=5cm,DF=12cm,点F为AB中点,点D、A

(1)如图b,将△DEF绕点F旋转,使两直角边分别于AC、BC较于点G、H,连接GH,求证AG²+BH²=GH²
(2)如图c,△DEF从图a的位置出发,从1cm/s的速度沿BA方向平移,在△DEF移动的同时,点P从△DEF的顶点D出发,以2cm/s的速度沿DE向点E匀速移动,当△DEF的顶点F与点A重合时,△DEF停止移动,点P也随之停止移动,设△DEF平移的时间为x(s),四边形EPAF的面积为y(cm²),求y与x之间的函数关系式
如图a,在RT△ABC和RT△DEF中,∠ACB=∠DFE=90°,AC=6cm,BC=8cm,EF=5cm,DF=12
⑴将ΔAFG绕F逆时针旋转180°到ΔFBG‘,连接 HG’,
∵∠ACB=90°,∴∠A+∠B=90°,∴∠HBG‘=90°,
∴HG’^2=BH^2+BG‘^2=BH^2+AG^2,
∵∠DFE=90°,∴∠AFG+∠BFH=90°,∴∠HFG‘=90°,
∵FG=FG’,FH=FH,∴ΔFHG≌ΔFHG‘,∴GH=HG’,
∴AG^2+BH^2=GH^2.
⑵DE=√(EF^2DF^2)=13,AB=√(AC^2+BC^2)=10,F为AB的中点,∴AF=5,
过P作PQ⊥DF于Q,则PQ∥EF,∴ΔDPQ∽ΔDEF,
∴PQ/EF=DP/DE,AP=2X,∴PQ=10X/13,
∴SΔADP=1/2AD*PQ=1/2*7*10X/13=35X/13,
∴Y=SΔDEF-SΔADP=30-35X/13.

说明:本题应用旋转思想题目不是很难,难在量大.