已知an=2n+3n,bn=an+1+kan,若{bn}是等比数列,则k=______.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 20:13:19
已知an=2n+3n,bn=an+1+kan,若{bn}是等比数列,则k=______.
因为{bn} 是等比数列,故有
(an+1+kan)2=(an+2+kan+1)(an+kan-1),
将an=2n+3n代入上式,得
[2n+1+3n+1+k(2n+3n)]2
=[2n+2+3n+2+k(2n+1+3n+1)]•[2n+3n+k(2n-1+3n-1)],
即[(2+k)2n+(3+k)3n]2
=[(2+k)2n+1+(3+k)3n+1][(2+k)2n-1+(3+k)3n-1],
整理得
1
6(2+k)(3+k)•2n•3n=0,
解k-=2或k=-3.
故答案为:-2或-3
(an+1+kan)2=(an+2+kan+1)(an+kan-1),
将an=2n+3n代入上式,得
[2n+1+3n+1+k(2n+3n)]2
=[2n+2+3n+2+k(2n+1+3n+1)]•[2n+3n+k(2n-1+3n-1)],
即[(2+k)2n+(3+k)3n]2
=[(2+k)2n+1+(3+k)3n+1][(2+k)2n-1+(3+k)3n-1],
整理得
1
6(2+k)(3+k)•2n•3n=0,
解k-=2或k=-3.
故答案为:-2或-3
已知:an+sn=n.1、令bn=an-1,求证:{bn}是等比数列.2、求an
{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
已知{an}是等差数列,bn=kan+m(k,m为常数).求证{bn}是等差数列
已知两个等差数列{an},{bn}的前n项和分别是Sn,Tn,若 Sn/Tn =(2n)/(3n+1),则 an/bn=
已知数列an满足bn=an-3n,且bn为等比数列,求an前n项和Sn
已知数列{an}是an=2^n,bn=3n+1的等比数列,Cn=(3n+1)*2^n求Sn.要完整过程.
a1=1,a2=2,an+2=(an+an-1)/2,n∈N+,(1)令bn=an+1-an,证明bn是等比数列
数学数列题、急数学题 在数列{An}.{Bn}中已知A(n+1)=2An+K Bn=A(n+1)-An求证{Bn}为等比
在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n
有两个正数数列an,bn,对任意正整数n,有an,bn,an+1成等比数列,bn,an+1,bn+1成等差数列,若a1=
在数列{an}中,已知a1=-1,an+a(n+1)+4n+2=0 (1)求bn=an+2n,求证:{bn}为等比数列