作业帮 > 数学 > 作业

对根号下1+cosx^2积分.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 23:16:27
对根号下1+cosx^2积分.
对根号下1+cosx^2积分.
√(1+cosx)
=√[1+2cos^2(x/2)-1]
=√[2cos^2(x/2)]
=√2*cos(x/2)
再问: 是cosx^2
再问: 求正解
再答: 哦,不好意思,看错了 令cosx=t,x=arccost,dx=-dt/√(1-t^2) ∫ √(1+cosx^2)dx =-∫ √(1+t^2)/√(1-t^2)dt 那就行了
再问: 下面怎么积分那。麻烦您了。
再答: 你只要搞懂 根号(1+x^2)的积分就行啊 令x=tanα,则:√(1+x^2)=√[1+(tanα)^2]=1/cosα, dx=[1/(cosα)^2]dα。 sinα=√{(sinα)^2/[(sinα)^2+(cosα)^2]}=√{(tanα)^2/[1+(tanα)^2} =x/√(1+x^2), ∴原式=∫{(1/cosα)[1/(cosα)^2]}dα    =∫[cosα/(cosα)^4]dα    =∫{1/[1-(sinα)^2]^2}d(sinα)。 再令sinα=u,则:
再答: 原式=∫[1/(1-u^2)^2]du   =(1/4)∫[(1+u+1-u)^2/(1-u^2)^2]du   =(1/4)∫[(1+u)^2/(1-u^2)^2]du+(1/2)∫[(1-u^2)/(1-u^2)^2]du    +(1/4)∫[(1-u)^2/(1-u^2)^2]du   =(1/4)∫[1/(1-u)^2]du+(1/2)∫[1/(1-u^2)]du+(1/4)∫[1/(1+u)^2]du   =-(1/4)∫[1/(1-u)^2]d(1-u)+(1/4)∫[(1+u+1-u)/(1-u^2)]du    +(1/4)∫[1/(1+u)^2]d(1+u)   =(1/4)[1/(1-u)]-(1/4)[1/(1+u)]+(1/4)∫[1/(1-u)]du    +(1/4)∫[1/(1+u)]du   =(1/4)[1/(1-sinα)]-(1/4)[1/(1+sinα)]    -(1/4)∫[1/(1-u)]d(1-u)+(1/4)∫[1/(1+u)]d(1+u)   =(1/4){1/[1-x/√(1+x^2)]}-(1/4){1/[1+x/√(1+x^2)]}    -(1/4)ln|1-u|+(1/4)ln|1+u|+C   =(1/4)[1+x/√(1+x^2)-1+x/√(1+x^2)]/[1-x^2/(1+x^2)]    +(1/4)ln|1+sinα|-(1/4)ln|1-sinα|+C   =(1/4)[2x/√(1+x^2)]/[(1+x^2-x^2)/(1+x^2)]    +(1/4)ln[|1+x/√(1+x^2)|/|1-x/√(1+x^2)|]+C   =(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]/[√(1+x^2)-x]|+C   =(1/2)x√(1+x^2)+(1/4)ln|[√(1+x^2)+x]^2/(1+x^2-x^2)|+C   =(1/2)x√(1+x^2)+(1/2)ln|x+√(1+x^2)|+C 有点忘记了生疏了,不好意思啊,可能我的做法有点繁琐,你看看对你有帮助没