已知△abc满足(b-c)cos^2A=bcos^2B-ccos^2C,试判断△abc的形状
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/07 07:40:14
已知△abc满足(b-c)cos^2A=bcos^2B-ccos^2C,试判断△abc的形状
(b-c)cos^2A=bcos^2B-ccos^2C
(b-c)cos^2(π-(B+C))=bcos^2B-ccos^2C
(b-c)cos^2(B+C)=bcos^2B-ccos^2C
b(cos^2(B+C)-cos^2B)=c(cos^2(B+C)-cos^C)
cos^2(B+C)-cos^2B
=(cos(B+C)+cosB)(cos(B+C)-cosB)
=2cos(2B+C)/2cosC/2*(-sin(2B+C)/2sinC/2)
=-[2sin(2B+C)/2cos(2B+C)/2]*[2sinC/2cosC/2]
=-sin(2B+C)sinC
同样
cos^2(B+C)-cos^C=-sin(B+2C)sinB
所以
bsin(2B+C)sinC=csin(B+2C)sinB
b/sinB*sin(2B+C)=c/sinC*sin(B+2C)
因为:b/sinB=c/sinC
所以,sin(2B+C)=sin(B+2C)
2B+C=B+2C,或,2B+C+(B+2C)=π
B=C,或,B+C=π/3
所以,△abc是等腰三角形,或,A=120度的三角形
(b-c)cos^2(π-(B+C))=bcos^2B-ccos^2C
(b-c)cos^2(B+C)=bcos^2B-ccos^2C
b(cos^2(B+C)-cos^2B)=c(cos^2(B+C)-cos^C)
cos^2(B+C)-cos^2B
=(cos(B+C)+cosB)(cos(B+C)-cosB)
=2cos(2B+C)/2cosC/2*(-sin(2B+C)/2sinC/2)
=-[2sin(2B+C)/2cos(2B+C)/2]*[2sinC/2cosC/2]
=-sin(2B+C)sinC
同样
cos^2(B+C)-cos^C=-sin(B+2C)sinB
所以
bsin(2B+C)sinC=csin(B+2C)sinB
b/sinB*sin(2B+C)=c/sinC*sin(B+2C)
因为:b/sinB=c/sinC
所以,sin(2B+C)=sin(B+2C)
2B+C=B+2C,或,2B+C+(B+2C)=π
B=C,或,B+C=π/3
所以,△abc是等腰三角形,或,A=120度的三角形
在△ABC中,若sinA=2sin Bcos C,cos平方C-cos平方A=sin平方B,试判断△ABC的形状
在三角形ABC中求证 aCOS A+bCOS B+cCOS C=2aSIN B SIN C
已知△ABC的三边a,b,c满足a^2+b^2+c^2=ab+bc+ac,试判断△ABC的形状
已知△ABC的三边为a、b、c,且满足a^2+b^2+c^2-ab-bc-ac=0.试判断△ABC的形状.
已知a,b,c为三角形ABC的三条边,且满足a^2+b^2+c^2-ab-bc-ac=0.试判断△ABC的形状.
1.\x05已知A,B,C为△ABC的三边,且满足B²+2AB=C²+2AC,试判断△ABC的形状
已知:在△ABC中,a.bc三边满足a^2c^2-b^2-c^2=a^4-b^4.判断△ABC的形状
已知a,b,c是△ABC的三边,且满足a²-2bc=b²-2ac,试判断△ABC的形状.
已知abc是三角形abc的三边,且满足a^4+b^2c^2=b^4+a^2c^2,试判断三角形abc的形状
已知三角形的三边a,b,c满足等式a^2+b^2+c^2-ab-bc-ac=0,试着判断△ABC的形状
已知a、b、c是△ABC的三条边长,若a、b、c满足a^2+1/4b^2+5=4a+b-|c-2|,试判断△ABC的形状
若△ABC的三边长是a、b、c,且满足(b-c)²+(2a+b)(c-b)=0,试判断△ABCA的形状