综合除法:f(x)=ax^3+bx^2+cx+d为整系数多项式函数,且0
多项式 f(x)=x^4+ax^3+bx^2+cx+d 的系数均为实数,且f(2i)=f(2+i)=0.求a+b+c+d
证明三次多项式f(x)=ax^3+bx^2+cx+d(a不等于0)有且仅有一个拐点(x0,f(x0)),且若f(x1)=
下图为函数f(x)=-ax^3+bx^2+cx+d的图像f'(x)为函数f(x)的导数函数,
已知函数f(x)=x^3+bx^2+cx+d的导数为f'(x)=3x^2+4x且f(1)=7,设F(x)=f(x)-ax
1. 已知a b c d 是不全为0的实数,函数f(x)=bx^2+cx+d,g(x)=ax^3+bx^2+cx+d
已知对任何的x,整系数多项式ax^3+bx^2+cx+d都能被5整除.求证所有系数a,b,c,d都能被5整除.
设函数f=ax^3+bx^2+cx+d图像与y轴交点为P,且曲线于P的切线方程为12x-y-4=0,若函数在x=2时取得
设f(x)=ax^3+bx^2+cx+d(a>0),则f(x)为增函数的充要条件是( )
设f(x)=ax^3+bx^2+cx+d(a>0)则f(x)为R上增函数的充要条件是什么?
设三次函数f(x)=ax^3+bx^2+cx+d(a
已知x^3+bx^2+cx+d的系数都是整数,若bd+cd为奇数,求证:这个多项式不能表示为两个整系数多项式的乘积.
已知a,b,c,d是不全为零的实数,函数f(x)=bx^2+cx+d,g(x)=ax^3+bx^2+cx+d,方程f(x