实数x,y满足ax-y≥0,x+ay≥0,2x+y≤4对任意的a>1/2,该不等式组对应平面区域面积的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 20:12:13
实数x,y满足ax-y≥0,x+ay≥0,2x+y≤4对任意的a>1/2,该不等式组对应平面区域面积的
实数x,y满足
ax-y≥0,
x+ay≥0,
2x+y≤4
对任意的a>1/2,该不等式组对应平面区域面积的最小值
A、4
B、18/5
C、16/5
D、4
实数x,y满足
ax-y≥0,
x+ay≥0,
2x+y≤4
对任意的a>1/2,该不等式组对应平面区域面积的最小值
A、4
B、18/5
C、16/5
D、4
改区域面积为 【以y轴0-4为底边 x+ay=0与2x+y=4焦点的x值为高的三角形面积 减去以以y轴0-4为底边 ax-y=0与2x+y=4焦点的x值为高的三角形面积】x+ay=0与2x+y=4焦点的x值为4a/(2a-1) ax-y=0与2x+y=4焦点的x值为 4/(a+2)
总面积为 (4a/(2a-1)- 4/(a+2))*4/2=8(a^2+1)/(2a^2+3a-2)=可能有点烦、、、 慢慢化简 8/(2+3/(8/3+(a-4/3)+25/9*(a-4/3))) 当且仅当(a-4/3)=25/9*(a-4/3)时有最小值 计算得a=3 因此面积为16/5
总面积为 (4a/(2a-1)- 4/(a+2))*4/2=8(a^2+1)/(2a^2+3a-2)=可能有点烦、、、 慢慢化简 8/(2+3/(8/3+(a-4/3)+25/9*(a-4/3))) 当且仅当(a-4/3)=25/9*(a-4/3)时有最小值 计算得a=3 因此面积为16/5
已知实数X,Y满足 x+y-2≤0,x-y+2≥0,y≥0表示的平面区域,每一对整数(X,Y)对应平面上一个点,则过其中
如果实数x y满足x≥0 y≥0 2x+y≤2,对任意的正数a,b,不等式ax+by≤1恒成立,则a+b的取值范围是
若实数x,y满足不等式组:x−y≥−1x+y≥13x−y≤3,则该约束条件所围成的平面区域的面积是( )
已知不等式组x-y≥0、x+y≥0、x≤a,表示平面区域的面积为4,点P(x,y)在所给的平面区域内,则Z=2x+y的
已知不等式组x-y≥0、x+y≥0、x≤a,表示平面区域的面积为4,点P(x,y)在所给的平面区域内,则Z=2x+y的最
不等式组:x≥0,y≥0,x+y≤2所表示的平面区域的面积是
不等式组y≤3,y≥|x|,y≤2|x|所表示的平面区域的面积等于
不等式组{x≥0 y≥0 x+y≤1表示的平面区域的面积为
.已知不等式(x+y)(1x + ay)≥9对任意正实数x,y恒成立,则正实数a的最小值为
求不等式组2x-2y+12≥0 x+y≥0 -2≤x≤4表示的平面区域的面积
求不等式组2x-2y+12≥0,x+y≥0,-2≤x≤4表示的平面区域的面积
画出不等式X-Y+4分子X+2Y+1≤0表示的平面区域