设数列{an}满足a1+3a2+3^2×a3+……+3^(n-1)×an=n/3,a∈N (1)求
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 10:17:59
设数列{an}满足a1+3a2+3^2×a3+……+3^(n-1)×an=n/3,a∈N (1)求数列{an}的通项(2)设bn=n/an,求数列{bn}的前n项和Sn
由a1+3a2+3^2a3+……+3^(n-1)an=n/3
和a1+3a2+3^2a3+……+3^(n-1)an+3^na_(n+1)=(n+1)/3得
3^n*a_(n+1)=1/3
所以a_(n+1)=1/[3^(n+1)]
所以an=1/(3^n)=
所以bn=n*3^n
设它的前n项和为S
则S=3+2*3^2+…………n*3^n
3S=3^2+2*3^3+…………(n-1)*3^n+n*3^(n+1)
上两等式左右分别相减得
(1-3)S=3+3^2+3^3+…………3^n-3^(n+1)
=[3^(n+1)-3]/2+3^n-3^(n+1)
=3^n-[3^(n+1)+3]/2
所以S=[3^(n+1)+3]-2*3^n
和a1+3a2+3^2a3+……+3^(n-1)an+3^na_(n+1)=(n+1)/3得
3^n*a_(n+1)=1/3
所以a_(n+1)=1/[3^(n+1)]
所以an=1/(3^n)=
所以bn=n*3^n
设它的前n项和为S
则S=3+2*3^2+…………n*3^n
3S=3^2+2*3^3+…………(n-1)*3^n+n*3^(n+1)
上两等式左右分别相减得
(1-3)S=3+3^2+3^3+…………3^n-3^(n+1)
=[3^(n+1)-3]/2+3^n-3^(n+1)
=3^n-[3^(n+1)+3]/2
所以S=[3^(n+1)+3]-2*3^n
设数列{an}满足a1+3 a2+3^2 a3+……+3^n-1 an=n/3,a属于N* 求数列{an}的通项
设数列{an}满足a1+3a2+3^2a3+.3^n-1×an=n/3,a∈N+.
设数列an满足a1+3a2+3^2a3+.+3^n-1an=n/3,n∈N*,求数列an的通项公式
设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)
已知数列{an}满足a1=1,an=a1 +1/2a2 +1/3a3 … +1/(n-1)a(n-1),(n>1,n∈N
数列{an}满足:1/a1+2/a2+3/a3+…+n/an=2n
设数列an满足a1+3a2+3^2a3+……+3^(n-1)an=n/3,a是正整数,设bn=n/an,求数列bn的前n
设数列{an}满足a1+3a2+3²a3+...+3^(n-1)an=n/3,n∈N+*.(1)求数列{an}
设数列{An}满足A1+3A2+3^2*A3+...+3^(n-1)*An=n/3,a属于正整数.
整数数列{An}满足 A1*A2+A2*A3+…+A(n-1)*An=(n-1)*n*(n+1)/3 ,(n=2,3,…
设数列an满足a1+3a2+3²a3……+3n-1次方an=n/3
设数列{An}满足A1+3A2+3²A3+…+3n-1An=3/n.(1)求数列{An}的通项.