设数列{an } 满足a1+3a2+3^2 *a3+...+3^(n-1)*an=n/3,n属于N*,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 10:52:15
设数列{an } 满足a1+3a2+3^2 *a3+...+3^(n-1)*an=n/3,n属于N*,
1.求数列{an }的通项,
2.设bn= n/ an,求数列{ bn } 的前n项和Sn
an=1 / 3^n
Sn=(2n-1) * 3^(n+1) /4 +3/4
1.求数列{an }的通项,
2.设bn= n/ an,求数列{ bn } 的前n项和Sn
an=1 / 3^n
Sn=(2n-1) * 3^(n+1) /4 +3/4
1.a1+3a2+3^2 *a3+...+3^(n-1)*an=n/3
可得a1+3a2+3^2 *a3+...+3^(n-2)*a(n-1)=(n-1)/3
两式相减得3^(n-1)*an=1/3
故an=1/3^n
2.bn= n/ an=n3^n
则Sn=1x3+2x3^2+……+n3^n
3Sn=3^2+……+(n-1)3^n+n3^(n+1)
两式相减得:-2Sn=3+3^2+……+3^n-n3^(n+1)
=(1/2-n)3^(n+1)-3/2
得:Sn=(n/2-1/4)3^(n+1)-3/4
可得a1+3a2+3^2 *a3+...+3^(n-2)*a(n-1)=(n-1)/3
两式相减得3^(n-1)*an=1/3
故an=1/3^n
2.bn= n/ an=n3^n
则Sn=1x3+2x3^2+……+n3^n
3Sn=3^2+……+(n-1)3^n+n3^(n+1)
两式相减得:-2Sn=3+3^2+……+3^n-n3^(n+1)
=(1/2-n)3^(n+1)-3/2
得:Sn=(n/2-1/4)3^(n+1)-3/4
设数列{an}满足a1+2a2+3a3+.+nan=n(n+1)(n+2)
设数列{An}满足A1+3A2+3^2*A3+...+3^(n-1)*An=n/3,a属于正整数.
设数列{an}满足a1+3 a2+3^2 a3+……+3^n-1 an=n/3,a属于N* 求数列{an}的通项
设数列{an}满足a1+3a2+3平方a3+...+3n-1an=n/3,n属于N*.求数列{an}的通项公式?
设数列{an}满足a1+3a2+3^2a3+.3^n-1×an=n/3,a∈N+.
设数列{an}满足a1+3*a2+3^2*a3+......+3^(n-1)*an=3/n,n属于正整数。 (1)求数列
设数列an满足a1+3a2+3^2a3+.+3^n-1an=n/3,n∈N*,求数列an的通项公式
设数列AN满足A1+3A2+3^2A3+...+3^N-IAN=N/3,
数列{an}满足:1/a1+2/a2+3/a3+…+n/an=2n
数列an满足a1+2a2+3a3+...+nan=(n+1)(n+2) 求通项an
设数列{an}满足a1+3a2+3²a3+...+3^(n-1)an=n/3,n∈N+*.(1)求数列{an}
问道数列题.设数列an满足a1+2a2+3a3+...+nan=2^n(n属于正自然数),则数列an的通项是?