一个简单微分方程y'+C1/y=C2C1和C2都是常数啦,/是分数线。C1/y就是y分之C1,y'就是y的导数
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 20:01:03
一个简单微分方程
y'+C1/y=C2
C1和C2都是常数啦,/是分数线。C1/y就是y分之C1,y'就是y的导数
y'+C1/y=C2
C1和C2都是常数啦,/是分数线。C1/y就是y分之C1,y'就是y的导数
C1=a,C2=b.
(1)当b=0时,原微分方程为:y'+a/y=0
∴ydy=-adx
y²/2=-ax+C/2,(C是积分常数)
故 原微分方程通解为;y²=C-2ax,(C是积分常数).
(2)当b≠0时,原微分方程变换为:
ydy/(by-a)=dx
==>1/b[1+a/(by-a)]dy=dx
==>1/b[y+a/bln|by-a|]=x+C1,(C1是积分常数)
==>y+a/bln|by-a|=bx+C2,(C2=bC1)
==>a/bln|by-a|=bx-y+C2
==>ln|by-a|=b²x/a-by/a+C3,(C3=bC2/a)
==>by-a=C4e^(b²x/a-by/a),(C4=e^C3)
==>by=a+C4e^(b²x/a-by/a)
==>y=a/b+Ce^(b²x/a-by/a),(C(=C4/b)是积分常数)
故 原微分方程的通解是:y=a/b+Ce^(b²x/a-by/a),(C是积分常数).
(1)当b=0时,原微分方程为:y'+a/y=0
∴ydy=-adx
y²/2=-ax+C/2,(C是积分常数)
故 原微分方程通解为;y²=C-2ax,(C是积分常数).
(2)当b≠0时,原微分方程变换为:
ydy/(by-a)=dx
==>1/b[1+a/(by-a)]dy=dx
==>1/b[y+a/bln|by-a|]=x+C1,(C1是积分常数)
==>y+a/bln|by-a|=bx+C2,(C2=bC1)
==>a/bln|by-a|=bx-y+C2
==>ln|by-a|=b²x/a-by/a+C3,(C3=bC2/a)
==>by-a=C4e^(b²x/a-by/a),(C4=e^C3)
==>by=a+C4e^(b²x/a-by/a)
==>y=a/b+Ce^(b²x/a-by/a),(C(=C4/b)是积分常数)
故 原微分方程的通解是:y=a/b+Ce^(b²x/a-by/a),(C是积分常数).
验证y=C1 * e^(C2 - X) - 1是微分方程y″-9y=9的解但不是通解,C1、C2为任意常数.
问(x-C1)2+(y-C2)2=1是哪个微分方程的隐式通解,其中C1,C2为任意常数
导数求切线问题设函数Y=X平方-2X+2的图像为C1,函数Y=-X平方+AX+B的图像是C2,已知在C1与C2的一个交点
已知曲线C1:y=x2和C2:y=-(x-2)2,求C1和C2的公切线
验证函数y=(c1+c2*x)e^2x是微分方程y"-4y'+4y=0的通解,并求次微分方程满足初值条件y(0)=1,y
已知抛物线C1:y=x^2 + 2x和C2:y=-x^2 + a,如果直线l同时是C1,C2切线,则称l是C1,C2的公
已知两圆C1:x²+y²-2y=0,C2:x²+(y+1)²=4的圆心分别是C1
已知椭圆c1和双曲线c2:16分之x平方-9分之y平方=1有公共焦点,点p(6,√7)在椭圆c1上,求椭圆c1的方程.
曲线C1的方程y^2-x-4y+4=0,曲线C2的参数方程是**,则曲线C1与C2的关系是()?
已知曲线C1:y=e^x与C2:y=-1/e^x,若直线l是C1,C2的公切线,试求l的方程
验证给定函数是其对应微分方程的解:xyy"+x(y')^2-yy'=0,x^2/C1+y^2/C2=1
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为____