作业帮 > 数学 > 作业

在三角形ABC中,内角A、B、C对边的边长分别为 a、b、c,已知c=2,C=60度.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 19:08:13
在三角形ABC中,内角A、B、C对边的边长分别为 a、b、c,已知c=2,C=60度.
若三角形ABC面积为根号3,求a,b (2) 若sinC+sin(B-A)+2sin2A,求三角形ABC的面积
在三角形ABC中,内角A、B、C对边的边长分别为 a、b、c,已知c=2,C=60度.
S△ABC=1/2absin60°=√3
ab=4
由余弦定理得
4=a²+b²-2ab×1/2
a²+b²=8
(a-b)²=8-2×4=0
a=b=2
2、sinC+sin(B-A)=2sin2A
sin[π-(A+B)]+sin(B-A)=2sin2A
sin(A+B)+sin(B-A)=2sin2A
sinAcosB+cosAsinB+sinBcosA-cosBsinA=2sin2A
2sinBcosA=2sinAcosA
cosA(sinA-sinB)=0
当cosA=0,即A=90°时
B=180°-90°-60°=30°
由正弦定理a/sin90=b/sin30=c/sin60
得 a=4√3/3,b=2√3/3
S=1/2absinC=2√3/3
当sinA=sinB时
A=B或A=π-B(舍去)
则A=B=60°
△ABC是等边三角形 a=b=c=2
S=√3/4*2^2=√3