作业帮 > 数学 > 作业

过三角形ABC的边BC的中点M作直线垂直于角A的平分线AA’,且分别交直线AB,AC于点E,F,求证BE=CF=二分之一

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 23:44:25
过三角形ABC的边BC的中点M作直线垂直于角A的平分线AA’,且分别交直线AB,AC于点E,F,求证BE=CF=二分之一(AB%
应该是求证,BE=CF=二分之一(AB-AC)
过三角形ABC的边BC的中点M作直线垂直于角A的平分线AA’,且分别交直线AB,AC于点E,F,求证BE=CF=二分之一
证明:作CN‖AB,交EF于点N,则∠CNF=∠AEF
∵AA' 平分∠BAC,AA'⊥EF
∴∠AEF=∠AFE
∴∠CNF=∠CFN
∴CN=CF
∵M为BC的中点
易证△MBE≌△MCN
∴BE=CN
∴BE=CF
∵AE=AF
∴AB-BE=AC+CF
∴AB-AC=BE+CF=2BE
∴BE=1/2(AB -AC )
我按照AB>AC的形式画的图,你自己再画一下吧!