已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 07:19:26
已知函数f(x)的定义域为[0,1]且同时满足:①对任意x∈[0,1]总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)=f(x1)+f(x2)-2.
(I)求f(0)的值;
(II)求f(x)的最大值;
(III)设数列{an}的前n项和为Sn,且S
(I)求f(0)的值;
(II)求f(x)的最大值;
(III)设数列{an}的前n项和为Sn,且S
(Ⅰ)令x1=x2=0,
由③知f(0)=2f(0)-2⇒f(0)=2;
(Ⅱ)任取x1x2∈[0,1],且x1<x2,
则0<x2-x1≤1,∴f(x2-x1)≥2
∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1)+f(x1)-2-f(x1)=f(x2-x1)-2≥0
∴f(x2)≥f(x1),则f(x)≤f(1)=3.
∴f(x)的最大值为3;
(Ⅲ)由Sn=−
1
2(an−3)知,
当n=1时,a1=1;当n≥2时,an=−
1
2an+
1
2an−1
∴an=
1
3an−1(n≥2),又a1=1,∴an=
1
3n−1
∴f(an)=f(
1
3n−1)=f(
1
3n+
1
3n+
1
3n)=f(
2
3n)+f(
1
3n)−2
=3f(
1
3n)−4=3f(an+1)−4
∴f(an+1)=
1
3f(an)+
4
3
∴f(an+1)−2=
1
3(f(an)−2)
又f(a1)-2=1∴f(an)−2=(
1
3)n−1,∴f(an)=(
1
3)n−1+2
∴f(a1)+f(a2)++f(an)=2n+
3
2−
1
2×3n−1.
由③知f(0)=2f(0)-2⇒f(0)=2;
(Ⅱ)任取x1x2∈[0,1],且x1<x2,
则0<x2-x1≤1,∴f(x2-x1)≥2
∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1)+f(x1)-2-f(x1)=f(x2-x1)-2≥0
∴f(x2)≥f(x1),则f(x)≤f(1)=3.
∴f(x)的最大值为3;
(Ⅲ)由Sn=−
1
2(an−3)知,
当n=1时,a1=1;当n≥2时,an=−
1
2an+
1
2an−1
∴an=
1
3an−1(n≥2),又a1=1,∴an=
1
3n−1
∴f(an)=f(
1
3n−1)=f(
1
3n+
1
3n+
1
3n)=f(
2
3n)+f(
1
3n)−2
=3f(
1
3n)−4=3f(an+1)−4
∴f(an+1)=
1
3f(an)+
4
3
∴f(an+1)−2=
1
3(f(an)−2)
又f(a1)-2=1∴f(an)−2=(
1
3)n−1,∴f(an)=(
1
3)n−1+2
∴f(a1)+f(a2)++f(an)=2n+
3
2−
1
2×3n−1.
已知定义域[0,1]的函数f(x)同时满足三个条件:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③x1≥
已知定义域为[0,1]的函数f(x)同时满足以下三条:1、对任意的x∈[0,1],总有f(x)≥0 2、f(1)=1 3
希望老师讲解已知定义域为〔0,1〕的函数f(x)同时满足以下三个条件:1、对任意的x∈〔0,1〕,总有f(x)≥0 2、
高二的圆的方程已知定义域为[0,1]的函数f(x)满足:①对任意x∈[0,1],总有f(x)≥ 0;②f(1)=1;③若
函数f(x)的定义域为R,满足f(-x)=f(x)且f(1)=2014,对任意x∈【0,+∞),都有f'(x)>2x成立
已知函数f(x)的定义域为【0,1】,且同时满足:①f(x)=-3,②f(1)≤1恒成立;③,若x1≥0,x2≥0,x1
快,详解··21.已知定义域为[0,1]的函数f(x)同时满足①对于任意的x∈[0,1],总有f(x) ≥0,②f⑴=1
已知定义域为【0,1】的函数f(x)同时满足以下三个条件:1、对任意的x∈ [0,1],总有f(x)≥ 0; 2、f(1
已知函数f(x)定义域为{x|x≠0,x∈R}},对定义域的任意x1,x2都有f(x1乘x2)=f(x1)+f(x2)且
已知函数f(x)是定义域为R的偶函数f(x)>0且对任意x属于R,满足f(x-3)=1/f(x-1)求f (2013)
(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且
已知函数f(x)满足:①定义域为R;②对任意x∈R,有f(x+2)=2f(x);③当x∈[-1,1]时,f(x)=-|x