若a b c d是4个正数,且abcd=1求abc+ab+a+1分之a+bcd+bc+b+1分之b+cda+cd+c+1
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 23:45:39
若a b c d是4个正数,且abcd=1求abc+ab+a+1分之a+bcd+bc+b+1分之b+cda+cd+c+1分之c
能减少就减少
若a b c d是4个正数,且abcd=1,求abc+ab+a+1分之a,+bcd+bc+b+1分之b,+cda+cd+c+1分之c,dab+da+d+1分之d
能减少就减少
若a b c d是4个正数,且abcd=1,求abc+ab+a+1分之a,+bcd+bc+b+1分之b,+cda+cd+c+1分之c,dab+da+d+1分之d
原式=a/(abc+ab+a+1)+b/(bcd+bc+b+1)+c/(cda+cd+c+1)+d/(dab+da+d+1)
=a/(1/d+1/cd+1/bcd+bcd/bcd)+b/(bcd+bc+b+1)+c/(1/b+1/ab+1/dab+dab/dab)+d/(dab+da+d+1)
=a/(bc/bcd+b/bcd+1/bcd+bcd/bcd)+b/(bcd+bc+b+1)+c/(da/dab+d/dab+1/dab+dab/dab)+d/(dab+da+d+1)
=a/((bcd+bc+b+1)/bcd)+b/(bcd+bc+b+1)+c/((dab+da+d+1)/dab)+d/(dab+da+d+1)
=abcd/(bcd+bc+b+1)+b/(bcd+bc+b+1)+abcd/(dab+da+d+1)+d/(dab+da+d+1)
=(1+b)/(bcd+bc+b+1)+(1+d)/(dab+da+d+1)
=(1+b)/(bcd+bc+b+1)+(1+d)/(1/c+1/bc+bcd/bc+bc/bc)
=(1+b)/(bcd+bc+b+1)+(1+d)/(b/bc+1/bc+bcd/bc+bc/bc)
=(1+b)/(bcd+bc+b+1)+(1+d)/((bcd+bc+b+1)/bc)
=(1+b)/(bcd+bc+b+1)+(bc+bcd)/(bcd+bc+b+1)
=(1+b+bc+bcd)/(bcd+bc+b+1)
=1
∵a,b,c,d都是正数
∴上面过程中所有分母都大于零
∴原式=1
=a/(1/d+1/cd+1/bcd+bcd/bcd)+b/(bcd+bc+b+1)+c/(1/b+1/ab+1/dab+dab/dab)+d/(dab+da+d+1)
=a/(bc/bcd+b/bcd+1/bcd+bcd/bcd)+b/(bcd+bc+b+1)+c/(da/dab+d/dab+1/dab+dab/dab)+d/(dab+da+d+1)
=a/((bcd+bc+b+1)/bcd)+b/(bcd+bc+b+1)+c/((dab+da+d+1)/dab)+d/(dab+da+d+1)
=abcd/(bcd+bc+b+1)+b/(bcd+bc+b+1)+abcd/(dab+da+d+1)+d/(dab+da+d+1)
=(1+b)/(bcd+bc+b+1)+(1+d)/(dab+da+d+1)
=(1+b)/(bcd+bc+b+1)+(1+d)/(1/c+1/bc+bcd/bc+bc/bc)
=(1+b)/(bcd+bc+b+1)+(1+d)/(b/bc+1/bc+bcd/bc+bc/bc)
=(1+b)/(bcd+bc+b+1)+(1+d)/((bcd+bc+b+1)/bc)
=(1+b)/(bcd+bc+b+1)+(bc+bcd)/(bcd+bc+b+1)
=(1+b+bc+bcd)/(bcd+bc+b+1)
=1
∵a,b,c,d都是正数
∴上面过程中所有分母都大于零
∴原式=1
若a、b、c、d是四个正数,且abcd=1.求(a/abc+ab+a+1)+(b/bcd+bc+b+1)+(c/cda+
abcd=1 求1+a+ab+abc分之1 + 1+b+bc+bcd分之1 + 1+d+cd+cda分之1 + 1+d+
已知abcd=1,求a/(abc+ab+a+1)+b/(bcd+bc+b+1)+c/(cda+cd+c+1)+d/(da
分式设abcd=1,则a/(abc+ab+a+1)+b/(bcd+bc+b+1)+c/(cda+cd+c+1)+d/(d
已知abcd=1求1/(abc+ab+a+1)+1/(bcd+bc+b+1)+1/(cda+cd+c+1)+1/(dab
已知abcd=1,求ax/(abc+ab+a+1)+bx/(bcd+bc+b+1)+cx/(cda+cd+c+1)+dx
证明(abc+bcd+cda+dab)^2-(ab-cd)(bc-da)(ca-bd)=abcd(a+b+c+d)^2
abcd+abc+bcd+cda+dab+ab+bc+cd+da+ac+bd+a+b+c+d=2009 a+b+c+d=
已知a,b,c为实数,且ab分之a+b=3分之1,bc分之b+c=4分之1,ca分之c+a=5分之1,求abc分之ab+
已知a,b,c,d均为正数,且ab-bc=1,a^2+b^2+c^2+d^2-ab+cd=1,求abcd的值
若a、b、c、d均为正数,且abcd=1,求证:a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd+cd≥10
若abc=1,求ab+a+1分之a+bc+b+1分之b+a+c+1分之c的值