作业帮 > 数学 > 作业

若双曲线x2a2−y2b2=1(a>0,b>0)与直线y=2x无交点,则离心率e的取值范围是(  )

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 18:18:51
若双曲线
x
若双曲线x2a2−y2b2=1(a>0,b>0)与直线y=2x无交点,则离心率e的取值范围是(  )
由题意可得,
b
a≤2,∴e2=
c2
a2=
a2+b2
a2≤
a2+4a2
a2=5,
又e>1,∴1<e≤
5,
故选A.
若双曲线x2a2−y2b2=1(a>0,b>0)的渐近线与抛物线y=x2+2有公共点,则此双曲线的离心率的取值范围是( 直线y=32x与双曲线x2a2−y2b2=1(a>0,b>0)的交点在实轴上的射影恰好为双曲线的焦点,则双曲线的离心率为 双曲线x2a2−y2b2=1(a>0,b>0)的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是 直线y=22x与椭圆x2a2+y2b2=1,a>b>0的两个交点在x轴上的射影恰为椭圆的两个焦点,则椭圆的离心率e等于( 已知双曲线x2a2−y2b2=1(a>0,b>0)的实轴长、虚轴长、焦距长成等差数列,则双曲线的离心率e为(  ) 斜率为2的直线l过双曲线x2a2-y2b2=1(a>0,b>0)的右焦点,且与双曲线的左右两支分别相交,则双曲线的离心率 设离心率为e的双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲 设双曲线x2a2−y2b2=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于(  ) 已知双曲线x2a2−y2b2=1(a>0,b>0)被斜率为1的直线截得的弦的中点为(4,1),则该双曲线离心率的值为( 已知双曲线x2a2-y2b2=1 (a>0,b>0)的离心率为e=2,过双曲线上一点M作直线MA,MB交双 (2014•湛江二模)已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点 已知点F是双曲线x2a2−y2b2=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线