以圆锥曲线的一条经过焦点的弦为直径的圆与对应的准线有两个交点,则圆锥曲线为:
已知圆锥曲线c经过定点p(3,2根号3),它的一个焦点为f(1,0),对应与该焦点的准线为x=-1,斜率为2的直线L交圆
圆锥曲线的一个焦点是(p/2,0),它对应的准线方程为X=-P/2,则此曲线为
高中数学,圆锥曲线.以过抛物线焦点的两条弦AB,CD为直径作圆,证明这两个圆的公共弦过原点.
已知圆锥曲线C经过定点P(3,2根号3),它的一个焦点为F(1,0),对应于该焦点的准线为x=负1,过焦点F任意作曲..
设AB是过椭圆焦点F的弦,以AB为直径的圆与椭圆的焦点F对应的准线L的位置关系是
证明以抛物线的焦点弦为直径的圆与抛物线的准线相切
求证 以抛物线的的焦点弦为直径的圆必与抛物线准线相切
圆锥曲线C的焦点F(1,0),相应准线是Y轴,过焦点F并与X轴垂直的玄长为(根号8) 求圆锥曲线方程
圆锥曲线题~以坐标原点为中心,焦点在坐标轴上的椭圆中,过右焦点F做直线交椭圆与点P,B,PB延长线交右准线于点Q,且P为
在o为原点的直角坐标系中,已知圆锥曲线的一个焦点为F(1,0),对应这个焦点的准线方程为x=-1,且过
求直线与圆锥曲线的交点
10.已知一条圆锥曲线的一个焦点是F(1,0),对应准线L是:x=-1,且曲线过点M(3,2√3),求圆锥曲线的方程