已知椭圆方程是x^/12+y^/4=1,F1,F2为椭圆的两个焦点,p为椭圆上一点,若pF1⊥PF2,则这样的P点有几个
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 10:30:18
已知椭圆方程是x^/12+y^/4=1,F1,F2为椭圆的两个焦点,p为椭圆上一点,若pF1⊥PF2,则这样的P点有几个?
A .2 B.3 C.4 D .0
A .2 B.3 C.4 D .0
解析:
已知椭圆方程为x²/12 +y²/4=1可得a²=12,b²=4,c²=16,则焦点F1(-4,0),F2(4,0)
且设点P坐标为(2√3sina,2cosa)
所以向量PF1=(-4-2√3sina,-2cosa),PF2=(4-2√3sina,-2cosa)
若PF1⊥PF2,则:
(-4-2√3sina)*(4-2√3sina)+(-2cosa)*(-2cosa)=1
12sin²a+4cos²a=17
8sin²a=13
sin²a=13/8
易知此时有|sina|>1,显然这样的角a不存在
所以这样的P点有0个,不存在.
选项D正确!
已知椭圆方程为x²/12 +y²/4=1可得a²=12,b²=4,c²=16,则焦点F1(-4,0),F2(4,0)
且设点P坐标为(2√3sina,2cosa)
所以向量PF1=(-4-2√3sina,-2cosa),PF2=(4-2√3sina,-2cosa)
若PF1⊥PF2,则:
(-4-2√3sina)*(4-2√3sina)+(-2cosa)*(-2cosa)=1
12sin²a+4cos²a=17
8sin²a=13
sin²a=13/8
易知此时有|sina|>1,显然这样的角a不存在
所以这样的P点有0个,不存在.
选项D正确!
F1,F2是椭圆X*/100+y*/64=1的两焦点,P为椭圆上一点,则|PF1|.|PF2|的最大值|PF1|
已知P为椭圆x^2/49+y^2/24=1上一点,F1,F2为焦点,若PF1垂直PF2,则三角形PF1F2的面积是
设P是椭圆(x²/4)+y²=1上的一点,F1,F2是椭圆的两个焦点,则|PF1||PF2|的最大值
点p(3,4)是椭圆x^2/a^2+y^2/b^2=1上的一点,f1,f2为椭圆的两焦点,若pf1垂直pf2.1)椭圆的
已知F1,F2是椭圆X的平方/100+Y的平方/64=1的两个焦点,P是椭圆上一点.求PF1*PF2的最大值.
已知椭圆的两焦点为F1(-1,0),F2(1,0),P为椭圆上一点,且2F1F2=PF1 PF2 求椭圆的方程
已知P(3,4)是椭圆上的一点,F1.F2是椭圆的两个焦点.若PF1垂直于PF2,求椭圆的方程
P是椭圆X^/16+Y^/9=1上一点,F1,F2分别是椭圆的左右焦点,若|PF1|.|PF2|=12,则∠F1PF2的
设点P是椭圆x^2/5+y^2/25=1上的一点,F1、F2是椭圆的两个焦点,若PF1⊥PF2,则|PF1|与|PF2|
已知椭圆的两焦点为F1(-1,0),F2(1,0),P为椭圆上的一点,且有2|F1F2|=|PF1|+|PF2|求椭圆的
已知椭圆,P为椭圆上一点,F1,F2为左右两个焦点.求向量PF1×向量PF2的最大值
已知椭圆,P为椭圆上一点,F1,F2为左右两个焦点.求向量PF1×向量PF2的最大值.