作业帮 > 数学 > 作业

函数f(x)=-x2+(2a-1)|x|+1的定义域被分成了四个不同的单调区间,则实数a的取值范围是(  )

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 13:17:00
函数f(x)=-x2+(2a-1)|x|+1的定义域被分成了四个不同的单调区间,则实数a的取值范围是(  )
A. a>
2
3
函数f(x)=-x2+(2a-1)|x|+1的定义域被分成了四个不同的单调区间,则实数a的取值范围是(  )
f(x)=-x2+(2a-1)|x|+1是由函数f(x)=-x2+(2a-1)x+1变化得到,
第一步保留y轴右侧的图象,再作关于y轴对称的图象.
因为定义域被分成四个单调区间,
所以f(x)=-x2+(2a-1)x+1的对称轴在y轴的右侧,使y轴右侧有两个单调区间,对称后有四个单调区间.
所以
2a-1
2>0,即a>
1
2.
故选C