a+b+c=2π 证明sina+sinb+sinc=4sina/2sinb/2sinc/2
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 20:02:37
a+b+c=2π 证明sina+sinb+sinc=4sina/2sinb/2sinc/2
(a+b)/2= π -c/2
sina+sinb+sinc
=2sin(a+b)cos(a-b)+2sin(c/2)cos(c/2)
=2sin[(a+b)/2]cos[(a-b)/2]-2sin[(a+b)/2]cos[(a+b)/2]
=2sin[(a+b)/2] [cos(a-b)/2-cos[(a+b)/2]
=2sinc/2 *[cos(a-b)/2-cos[(a+b)/2]
=4sina/2sinb/2sinc/2
得证.
sina+sinb+sinc
=2sin(a+b)cos(a-b)+2sin(c/2)cos(c/2)
=2sin[(a+b)/2]cos[(a-b)/2]-2sin[(a+b)/2]cos[(a+b)/2]
=2sin[(a+b)/2] [cos(a-b)/2-cos[(a+b)/2]
=2sinc/2 *[cos(a-b)/2-cos[(a+b)/2]
=4sina/2sinb/2sinc/2
得证.
已知A,B,C是△ABC的三个内角,且满足(sinA-sinB)(sinA+sinB)=sinC(2sinA-sinC)
∵a+c=2b∴sinA+sinC=2sinB,,即2sinA+C2cosA-C2=4s
已知在△ABC中,sinA:sinB:sinC=1:2:3,求a:b:c
在三角行ABC中,sinA+sinC=2sinB,A-C=π/3,求sinB的值
已知△ABC中,sinA+sinC=2sinB,A-C=π/3,求sinB的值.
在三角形ABC中,猜想T=sinA+sinB+sinC的最大值,并证明之 sinA+sinB=2sin((A+B)/2)
在△ABC中,求证:sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
11.在△ABC中,求证sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
在三角形ABC中.已知sin^2A+sin^2B*sin^2C=sinB*sinC+sinC*sinA+sinA*sin
已知三角形ABC中,a+c+=2b,3a+b=2c,求sinA:sinB:sinC
在三角形ABC中,a+c=2b,3a+b=2c,求sinA:sinB:sinC
以知三角形ABC中,a+c=2b,3a+b=2c,求sinA:sinB:sinC