向量OA=(cosα,sinα),OB=[-sin(α+π/6),cos(α+π/6)]
已知向量OA=(λsinα,λcosα),OB=(cosβ,sinβ),且α+β=5π/6,其中O为原点,
已知向量OA=(2cosα,2sinα),向量OB=(-sinβ,cosβ),其中O为坐标原点,若β=α-π/6,则|向
已知向量OA=(cosα,sinα),OB=(cosβ,sinβ),OC=(cosγ,sinγ),且O为△ABC的重心,
已知向量OA=(λcosα,λsinα)(λ≠0)向量OB=(-sinβ,cosβ)其中O为坐标原点.
在同一平面内,已知向量OA=(cosα,sinα),向量OB=(cosβ,sinβ),
已知向量OA=(λcosα,λsinα)(λ≠0),OB=(-sinβ,cosβ),其中O为坐标原点.
在三角形OAB中,向量OA=(2cosα,2sinα),向量OB=(5cosβ,5sinβ),若向量OA*OB=-5,求
用向量法证明cos(α-β)=cosαcosβ+sinαsinβ
向量OA=(cos ,sin )向量OB=(cos sin ) 且向量OA*向量OB=0,若向量OA=(cos
已知向量OA=a=(cosα,sinα),向量OB=b=(2cosβ,2sinβ),向量OC=c=(0,2),其中O为坐
已知向量OA=(2,0),向量OB=(2+√ 2cos α ,2+√ 2sin α ),则向量OA与向量OB的夹角的取值
已知向量OA=(λcosα,λsinα)(λ≠0)向量OB=(-sinβ,cosβ)其中O为坐标原点拜托了各位 谢谢