已知数列an满足an>0,Sn=[(an+1)/2]^2,bn=(-1)^n*Sn,求b1+b2+……+bn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 11:49:29
已知数列an满足an>0,Sn=[(an+1)/2]^2,bn=(-1)^n*Sn,求b1+b2+……+bn
4Sn=(an+1)^2
4S(n-1)=[a(n-1)+1]^2
an=Sn-S(n-1)
所以相减
4an=(an+1)^2-[a(n-1)+1]^2
(an+1)^2-4an=[a(n-1)+1]^2
(an-1)^2=[a(n-1)+1]^2
an-1=a(n-1)+1或an-1=-a(n-1)-1
an=a(n-1)+2或an=-a(n-1)
an>0
所以an=-a(n-1)不成立
所以an=a(n-1)+2
所以an是等差数列
S1=a1
所以2√a1=a1+1
(√a1-1)=0,an=1
an=2n-1
Sn=(1+2n-1)*n/2=n^2
bn=(-1)^n*n^2
Tn=b1+b2+...+bn
n为偶数,设n=2k.
Tn=-1^2+2^2-3^2+4^2+...-(2k-1)^2+(2k)^2
=(2-1)(2+1)+...+(2k-2k+1)(2k+2k-1)
=1+2+3+4+...+4k-1
=(1+4k-1)*2k/2
=4k^2
=n^2.
n是奇数时,设n=2k+1
Tn=4k^2+(-1)^(2k+1)*(2k+1)^2
=4k^2-(4k^2+4k+1)
=-4k-1
=-2(2k+1)+1
=-2n+1.
4S(n-1)=[a(n-1)+1]^2
an=Sn-S(n-1)
所以相减
4an=(an+1)^2-[a(n-1)+1]^2
(an+1)^2-4an=[a(n-1)+1]^2
(an-1)^2=[a(n-1)+1]^2
an-1=a(n-1)+1或an-1=-a(n-1)-1
an=a(n-1)+2或an=-a(n-1)
an>0
所以an=-a(n-1)不成立
所以an=a(n-1)+2
所以an是等差数列
S1=a1
所以2√a1=a1+1
(√a1-1)=0,an=1
an=2n-1
Sn=(1+2n-1)*n/2=n^2
bn=(-1)^n*n^2
Tn=b1+b2+...+bn
n为偶数,设n=2k.
Tn=-1^2+2^2-3^2+4^2+...-(2k-1)^2+(2k)^2
=(2-1)(2+1)+...+(2k-2k+1)(2k+2k-1)
=1+2+3+4+...+4k-1
=(1+4k-1)*2k/2
=4k^2
=n^2.
n是奇数时,设n=2k+1
Tn=4k^2+(-1)^(2k+1)*(2k+1)^2
=4k^2-(4k^2+4k+1)
=-4k-1
=-2(2k+1)+1
=-2n+1.
数列an的前n项和为Sn,Sn=4an-3,①证明an是等比数列②数列bn满足b1=2,bn+1=an+bn.求数列bn
已知数列{an}满足an+Sn=n,数列{bn}满足b1=a1,且bn=an-a(n-1),(n≥2),试求数列{bn}
数列an的前n项和为Sn,Sn=2an-1,数列bn满足b1=2,bn+1=an+bn.求数列bn的前n项和Tn
已知an=2n-1,an=b1/2+b2/2^2+b3/2^3+……+bn/2^n,求数列bn的前n项和Sn
已知数列an的前n项和Sn满足Sn=2an-1,等差数列bn满足b1=a1,b4=S3.求数列an、bn的通项公式
已知数列{an}的各项均为正数,前n项和为Sn,且Sn=an(an+1)/2,设bn=1/2Sn,Tn=b1+b2+…+
已知数列an bn其中a1=1/2数列an的前n项和Sn=n^2an(n≥1) 数列bn满足b1=2 bn+1=2bn
等差数列{an}中an=2n+1,等比数列{bn}满足b1=a2,b2=a4求{bn}前n项和Sn
3.设数列{an}的前n项和Sn=2an-4(n∈N+),数列{bn}满足:bn+1=an+2bn,且b1=2.求{bn
已知数列An满足An>0,其前n项和为Sn为满足2Sn=An的平方+An(1)求An(2)设数列Bn满足An/2的n次方
已知数列{an}的前n项和Sn满足Sn=2an-1,等差数列{bn}满足b1=a1,b4=S3.
an=2*3^n-1 若数列bn满足bn=an+(-1)^n*ln(an),求数列bn前n项和Sn