微分方程特解.y‘+(2x/1+x^2)y=x+1 y(0)=1/2 求微方程的特解
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 06:08:42
微分方程特解.
y‘+(2x/1+x^2)y=x+1 y(0)=1/2 求微方程的特解
y‘+(2x/1+x^2)y=x+1 y(0)=1/2 求微方程的特解
你要特解,其实特解和你的通解是有关系的,我就把一般算法给你总结出来了,是我自己的复习笔记,
二次非齐次微分方程的一般解法
一般式是这样的ay''+by'+cy=f(x)
第一步:求特征根:
令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)
第二步:
若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)
若r1=r2,则y=(C1+C2x)*e^(r1*x)
若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)
第三步:
f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)
则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)
若λ不是特征根 k=0 y*=Q(x)*e^(λx)
若λ是单根 k=1 y*=x*Q(x)*e^(λx)
若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)
f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx
若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)
若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)
第四步:解特解系数
把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数.
最后结果就是y=通解+特解
通解的系数C1,C2是任意常数
有问题可以再问我,拿例子的话好说明问题.
二次非齐次微分方程的一般解法
一般式是这样的ay''+by'+cy=f(x)
第一步:求特征根:
令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)
第二步:
若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)
若r1=r2,则y=(C1+C2x)*e^(r1*x)
若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)
第三步:
f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)
则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)
若λ不是特征根 k=0 y*=Q(x)*e^(λx)
若λ是单根 k=1 y*=x*Q(x)*e^(λx)
若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)
f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx
若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)
若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)
第四步:解特解系数
把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数.
最后结果就是y=通解+特解
通解的系数C1,C2是任意常数
有问题可以再问我,拿例子的话好说明问题.
求微分方程的特解 y'-2y/(1-x^2)=x+1 x=0,y=0
y'=e^(y-2x),y丨x=0 =1 微分方程特解
x*y''+x*(y')^2-y'=0,当x=2时,y=2,y'=1,求微分方程的特解
求微分方程y'+2y=e^x满足初始条件y(0)=1/3的特解
求微分方程y''-3y'+2y=2e^x满足y|x=0 =1,dy/dx|x=0 =0的特解
求微分方程x^2y撇+xy=y^3满足初始条件y(1)=1的特解
求微分方程y″-2y′-3y=3x+1+ex的一个特解.
求下列微分方程的特解:dy/dx=y/2根号x,y|x=4=1
求微分方程y'=(x^2+1)/(1+tany)满足初始条件y(0)=0的特解
求微分方程的特解x^2y''+xy'=1,y|(x=1)=0,y'|(x=1)=1
求微分方程dy/dx=[x(1+y^2)]/[(1+x^2)y]满足初始条件y|(x=0)=1的特解
微分方程dy/dx=xy/y^2-x^2 ,当x=0,y=1的特解