作业帮 > 数学 > 作业

设是a,b,c,d正整数,a,b是方程x2-(d-c)x+cd=0的两个根.证明:存在边长是整数且面积为ab的直角三角形

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 17:27:47
设是a,b,c,d正整数,a,b是方程x2-(d-c)x+cd=0的两个根.证明:存在边长是整数且面积为ab的直角三角形.
设是a,b,c,d正整数,a,b是方程x2-(d-c)x+cd=0的两个根.证明:存在边长是整数且面积为ab的直角三角形
证明:由题设可知a+b=d-c,ab=cd.
∵a,b,c,d是正整数,
∴(a+b),(a+c),(b+c)任意两数之和大于第三个数,
从而存在以(a+b),(a+c),(b+c)为边的三角形.
∵(a+c)2+(b+c)2
=a2+b2+2c2+2c(a+b)
=a2+b2+2cd
=a2+b2+2ab
=(a+b)2
∴这样的三角形是直角三角形,其直角边长为(a+c),(b+c),斜边长为(a+b),
且该三角形的面积为:S=
1
2(a+c)(b+c)=
1
2[ab+c(a+b+c)]=
1
2(ab+cd)=ab.
故边长为(a+b),(a+c),(b+c)的三角形符合题设要求.