函数z=f(x,y)的两个混合二阶偏导数在区域D内连续是这两个二阶混合偏导数在D内相等的充分条件.为什么?
高等数学多元函数微分在高等数学下册的68页有定理:如果函数z=f(x,y)的二阶混合偏导数在D区域内连续,那么混合偏导数
z=f(x,y)的两个偏导数在点(x,y)存在且连续是f(x,y)在该点可微分的充分条件.为什么不是充分必要条件?
函数Z=f(x,y)的两个偏导数在点(x,y)连续是f(x,y)在该点可微分的什么条件啊?
z=f(x,y)的两个偏导数在点(x,y)存在且连续是F(x,y)在该点的可微分的充分条件
二元函数极值设函数 z = f ( x ,y ) 在点 ( x 0 ,y 0 ) 的某邻域内连续且有一阶及二阶连续偏导数
设函数f(z)=u(x,y)+v(x,y)在区域D内解析,证明u(x,y)也是区域D内的解析函数
二元函数z=f(x,y)在点(x0,y0)处偏导数存在是f(x,y)在该点连续的什么条件?
一个二元的函数f(x,y)在一个闭区域D上一阶偏导数连续是什么意思啊?跟开区域D上一阶偏导数连续有区别吗?
导数微分已知函数f(x)在[a,b]内有一阶连续导数,而且在(a,b)内具有二阶导数,请问f(x)的二阶导数是否一定连续
描述二元函数Z=f(x,y)在 (0,0)点邻域内有定义,连续,偏导数存在,可微四个条件间关系
对于函数y=f(x)(x∈D),D为此函数的定义域,若同时满足下列两个条件:①f(x)在D内单调
求函数z=f(x^2y,xy^2)的二阶偏导数∂^2z/∂x^2 其中f具有二阶连续偏导数