数列an中,a1=1/2,an+1=nan/【(n+1)*(nan+1)】,前n项和为Sn
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 22:20:35
数列an中,a1=1/2,an+1=nan/【(n+1)*(nan+1)】,前n项和为Sn
1.设bn=1/nan,求证数列bn是等差数列
2求Sn的表达式
1.设bn=1/nan,求证数列bn是等差数列
2求Sn的表达式
1.
1/A(n+1)=(n+1)(nAn+1)/(nAn)
1/[(n+1)A(n+1)]=(nAn+1)/(nAn)=1+1/(nAn)
B(n+1)=1+Bn
{Bn}是公差为1的等差数列
2.
B1=1/A1=2
Bn=2+(n-1)=n+1=1/(nAn)
An=1/(n(n+1))=(n+1-n)/(n(n+1))=1/n-1/(n+1)
Sn=A1+A2+……+An
=(1/1-1/2)+(1/2-1/3)+……+1/n-1/(n-1)
=1-1/(n-1)
=n/(n-1)
1/A(n+1)=(n+1)(nAn+1)/(nAn)
1/[(n+1)A(n+1)]=(nAn+1)/(nAn)=1+1/(nAn)
B(n+1)=1+Bn
{Bn}是公差为1的等差数列
2.
B1=1/A1=2
Bn=2+(n-1)=n+1=1/(nAn)
An=1/(n(n+1))=(n+1-n)/(n(n+1))=1/n-1/(n+1)
Sn=A1+A2+……+An
=(1/1-1/2)+(1/2-1/3)+……+1/n-1/(n-1)
=1-1/(n-1)
=n/(n-1)
数列 an的前n项和为Sn,a1=1,an+1=2Sn 求数列{nan}的前n项和Tn
已知数列{an}的前n项和为Sn,又a1=2,nAn+1=sn+n(n+1),求数列{an}的通项公式
数列an的前n项和为sn,且a1=2,nan+1=sn+n*(n+1),求数列an通项公式
已知数列{an}前n项和为Sn,a1=1,an+1=2Sn,求{nan}的前n项和Tn.
设数列{an}的前n项和为sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*)
数列an的前n项和Sn,a1=1,a(n+1)(下标)=2Sn.求通项an 求nan的前n项和Tn
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-2(n-1)n
已知数列{an}的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1),
已知数列an的前n项和为Sn,a1=2,nan+1=Sn+n(n+1),
设数列{an}的前n项和为Sn,a1+2a2+3a3.+nan=(n-1)Sn+2n,
设数列an的前n项和为Sn 已知a1+2a2+3a3+……+nan=(n-1)Sn+2n
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n∈N+)