设f(x),g(x)在[a,b]上连续,在(a,b)内可导
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 20:22:19
设f(x),g(x)在[a,b]上连续,在(a,b)内可导
证明在(a,b)内存在一点ξ,使得f(a)*g(b)-g(a)*f(b)=(b-a)(f(a)*g'(ξ)-g(a)*f'(ξ))
证明在(a,b)内存在一点ξ,使得f(a)*g(b)-g(a)*f(b)=(b-a)(f(a)*g'(ξ)-g(a)*f'(ξ))
构造辅助函数F(x)=(x-a) [f(a)*g(b)-g(a)*f(b)]/(b-a)-f(a)g(x)+g(a)f(x)
因为有F(a)=0,F(b)=0,所以存在F‘(ξ)=0,ξ∈(a,b)
[f(a)*g(b)-g(a)*f(b)]/(b-a)-f(a)*g'(ξ)+g(a)*f'(ξ)=0
即f(a)*g(b)-g(a)*f(b)=(b-a)(f(a)*g'(ξ)-g(a)*f'(ξ))
因为有F(a)=0,F(b)=0,所以存在F‘(ξ)=0,ξ∈(a,b)
[f(a)*g(b)-g(a)*f(b)]/(b-a)-f(a)*g'(ξ)+g(a)*f'(ξ)=0
即f(a)*g(b)-g(a)*f(b)=(b-a)(f(a)*g'(ξ)-g(a)*f'(ξ))
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设f(x)在[a,b]上连续,a
设f(x)与g(x)在[a,b]上连续,证明:
设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)>0,f(a)f[(a+b)/2]0,f(a)f[(a
设函数f(x)在[a,b]上连续,在(a,b)内可导(0
设f(x)在[a,b]上连续,在(a,b)内可导(0
证明:设f(x)在[a,b]上连续,在(a,b)内可导,(0
设f(x)在[a,b]上连续,在(a,b)内可导,(0
设f(x)在【a,b】上连续,在(a,b)内f''(x)>0,证明:
设f(x),g(x)在{a,b}上连续,在(a,b)内可导,且f'(x)=g'(x),x∈(a,b).证明存在常数C,使
设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)>0,f(a)f[(a+b)/2]
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).