求一数学题(在平行四边形ABCD中,AD=2AB,点M在AD 上,CE垂直AB,如果∠CEM=40°,则∠DME=多少
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 01:38:41
求一数学题(在平行四边形ABCD中,AD=2AB,点M在AD 上,CE垂直AB,如果∠CEM=40°,则∠DME=多少 答案是150
在四边形ABCD中,AD=2AB,M是AD的中点,CE垂直AB于E,如果∠CEM=40°,求∠DME的度数.
过点M作AB的平行线,交EC边与O,交BC边与N;连接CM
∵AM‖CN,AB‖MN,M为AD的中点,
∴四边形ABNM是平行四边形,AM=MD=BN=CN=AB=CD
∵AB‖MN,CE⊥AB,∠MEC=40°
∴∠AEM=∠EMN=90°-∠EMC=50°
∵∠EMN=50°,∠MEC=40°
∴∠MOE=90°
∵∠B=∠B,∠BCE=∠NCO
∴△EBC≈△ONC
又∵BN=CN,
∴EO=CO
又∵∠MOE=90°
∴∠EMO=∠CMO=50°
∵MN‖CD,DM=DC
∴∠NMC=∠DCM=∠DMC=50°
∴∠EMD=∠EMN+∠NMC+∠CMD=50°+50°+50°=150°
∴∠EMD=150°
答案:延长EM交CD延长线于F
因CE⊥AB故CE⊥CD 即三角形CEF为直角三角形
又M为AD的中点,可证M为EF的中点
即可证CM=EM=FM
所以,∠CEM=∠MCE=40°,∠MCF=50°,∠EMC=100°
又AD=2AB则可知MD=CD,故,∠CMD=∠MCF=50°
则,∠DME=∠EMC+∠CMD=150°
过点M作AB的平行线,交EC边与O,交BC边与N;连接CM
∵AM‖CN,AB‖MN,M为AD的中点,
∴四边形ABNM是平行四边形,AM=MD=BN=CN=AB=CD
∵AB‖MN,CE⊥AB,∠MEC=40°
∴∠AEM=∠EMN=90°-∠EMC=50°
∵∠EMN=50°,∠MEC=40°
∴∠MOE=90°
∵∠B=∠B,∠BCE=∠NCO
∴△EBC≈△ONC
又∵BN=CN,
∴EO=CO
又∵∠MOE=90°
∴∠EMO=∠CMO=50°
∵MN‖CD,DM=DC
∴∠NMC=∠DCM=∠DMC=50°
∴∠EMD=∠EMN+∠NMC+∠CMD=50°+50°+50°=150°
∴∠EMD=150°
答案:延长EM交CD延长线于F
因CE⊥AB故CE⊥CD 即三角形CEF为直角三角形
又M为AD的中点,可证M为EF的中点
即可证CM=EM=FM
所以,∠CEM=∠MCE=40°,∠MCF=50°,∠EMC=100°
又AD=2AB则可知MD=CD,故,∠CMD=∠MCF=50°
则,∠DME=∠EMC+∠CMD=150°
如图,在平行四边形ABCD中,AD=2AB,M是AD的中点,CE⊥AB于E,如果∠CEM=40°,求∠DME的度数.
已知,如图,在平行四边形abcd中,ad=2ab,m是ad中点,ce垂直ab于e,∠CEM=40度.求∠DME的度数
在平行四边形ABCD中,AB=1/2BC ,M为AD的中点 CE垂直AB于E 求证 角DME=3倍的角AEM
如图,在平行四边形ABCD中,BC=2AB,M为AD中点,CE⊥AB于点E,连接ME,试说明∠DME=3∠AEM.
如图,在平行四边形ABCD中,AD=2AB,点M为AD中点,求∠BMC的度数
一道几何体证明题.如图,在平行四边形中,BC=2AB,M为AD的中点,过点C作CE⊥B于E,证明∠DME=3∠AEM过程
如图,已知在平行四边形ABCD中,AD=2AB,E,F在直线AB上,且AE=AB=BF,说明CE垂直于DF
如果在平行四边形abcd中,ab‖cd,e在ad上,be平分∠abc,ce评分∠bcd,试说明bc=ab+cd
在平行四边形ABCD中,AB:AD=3:5,CE=4cm,∠BAD的平分线AE交BC于点E.求平行四边形ABCD的周长.
已知在平行四边形ABCD中,M为AD的中点,AD=2AB,求∠BMC的度数.
在平行四边形ABCD中,BE,CE分别平分∠ABC,∠BCD,E在AD上,BE=12cmCE=12cm.求平行四边形AB
如图,在平行四边形ABCD中,AB=8,tanB=2,CE垂直AB,垂足为E(点E在边AB上),F为边AD的中点……