设二次函数f(x)=ax^2+bx+c(a不为0)中a,b,c均为整数,且f(0),f(1)均为奇数,用反证法证明方程f
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 12:26:24
设二次函数f(x)=ax^2+bx+c(a不为0)中a,b,c均为整数,且f(0),f(1)均为奇数,用反证法证明方程f(X)=0无整数根
假设f(x)=0有实数根,并设其为x1
由已知:
f(0)=c为奇数
f(1)=a+b+c为奇数
所以a+b为偶数
a、b为两奇数或者两偶数
当a、b为两偶数时,ax1^2+bx1为偶数,显然不等于-c,即ax^2+bx+c≠0
当a、b为两奇数且x1不为偶数时,ax1^2为奇数,bx1也为奇数,ax1^2+bx1为偶数,也不等于-c,即ax^2+bx+c≠0
当a、b为两奇数且x1为偶数时,ax1^2+bx1为偶数,显然不等于-c,即ax^2+bx+c≠0
综上所述,当f(x)=0有实数根成立时,与所设条件矛盾,故f(x)=0无实数根
由已知:
f(0)=c为奇数
f(1)=a+b+c为奇数
所以a+b为偶数
a、b为两奇数或者两偶数
当a、b为两偶数时,ax1^2+bx1为偶数,显然不等于-c,即ax^2+bx+c≠0
当a、b为两奇数且x1不为偶数时,ax1^2为奇数,bx1也为奇数,ax1^2+bx1为偶数,也不等于-c,即ax^2+bx+c≠0
当a、b为两奇数且x1为偶数时,ax1^2+bx1为偶数,显然不等于-c,即ax^2+bx+c≠0
综上所述,当f(x)=0有实数根成立时,与所设条件矛盾,故f(x)=0无实数根
设二次函数f(x)=ax^2+bx+c中的a,b,c均为整数,且f(0),f(1)均为奇数,求证:方程f(x)=0无整数
设二次函数y=ax∧2+bx+c中的a,b,c为整数,且f(0),f(1)均为奇数,求证,方程f(x)无整数根
设函数f(x)=ax的平方加bx加c(a不等于0)中 a b c均为整数 且f(0) f(1) 均为奇数 求
设二次函数f(x)=ax^2+bx+c(a不等于0)中的a,b,c均为奇数.求证:方程f(x)=0无整数根.
设二次函数f(x)=ax^2+bx+c (a不等于0)中的a,b,c均为奇数,求证:方程f(x)=0无整数根.
设函数f(x)=ax2+bx+c (a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x
已知二次函数f(x)=ax^2+bx+c,若a>b>c,且f(1)=0 第(3)问:设f(x)=0的另一根为Xo,若方程
设二次函数f(x)=ax^2+bx+c(a>0),方程f(x)-x=0的两个根分别为x1,x2,且满足0
设函数f(x)=ax²+1/bx+c是奇函数,a,b,c均为整数,且f(1)=2,f(2)<3 求a,b,c的
已知二次函数f(x)=ax^2+bx+c(a.b.c属于R) f(-2)=f(0)=0 f(x)的最小值为-1
已知二次函数f(x)=ax²+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)最小值为-1
二次函数f(x)=ax²+bx+c ,a为正整数,c≥1,a+b+c≥1,方程ax²+bx+c=0有