四边形ABCD内接于圆O,AB是直径,AD=DC,分别延长BA、CD交于E,BF垂直EC,交EC延长线于F,EA=AO,
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/12 20:00:27
四边形ABCD内接于圆O,AB是直径,AD=DC,分别延长BA、CD交于E,BF垂直EC,交EC延长线于F,EA=AO,求CF
这题我在网上找到了答案,不过对答案中的一个解释有点不懂,现在就发答案上来
连结BC,CD,
因为 AD=DC,
所以 弧AD=弧DC,
所以 角CBE=角DOE,
所以 BC//OD,
所以 OD/BC=EO/EB,ED/EC=EO/EB,
因为 AB是直径,EA=AO,BC=12,
所以 OD/12=2/3,OD=8,EA=AO=8,EB=24,
ED/EC=2/3,ED=2EC/3,
因为 ED乘EC=EA乘EB,
所以 3分之2的EC平方=192,EC平方=288,EC=12根号2,ED=8根号2,
因为 角ADE=角CBE,角E公用,
所以 三角形EAD相似于三角形EBC,
所以 AD/BC=EA/EC,
AD/12=8/12根号2,AD=4根号2,
因为 AB是直径,BF垂直EC,
所以 角ADB=角BFC=直角,
又 角FCB=角DAB,
所以 三角形BCF相似于三角形BAD,
所以 CF/AD=BC/AB,
CF/4根号2=12/16,
所以 CF=3根号2.
答案中的ED乘EC=EA乘EB 为什么可以成立,求解释
这题我在网上找到了答案,不过对答案中的一个解释有点不懂,现在就发答案上来
连结BC,CD,
因为 AD=DC,
所以 弧AD=弧DC,
所以 角CBE=角DOE,
所以 BC//OD,
所以 OD/BC=EO/EB,ED/EC=EO/EB,
因为 AB是直径,EA=AO,BC=12,
所以 OD/12=2/3,OD=8,EA=AO=8,EB=24,
ED/EC=2/3,ED=2EC/3,
因为 ED乘EC=EA乘EB,
所以 3分之2的EC平方=192,EC平方=288,EC=12根号2,ED=8根号2,
因为 角ADE=角CBE,角E公用,
所以 三角形EAD相似于三角形EBC,
所以 AD/BC=EA/EC,
AD/12=8/12根号2,AD=4根号2,
因为 AB是直径,BF垂直EC,
所以 角ADB=角BFC=直角,
又 角FCB=角DAB,
所以 三角形BCF相似于三角形BAD,
所以 CF/AD=BC/AB,
CF/4根号2=12/16,
所以 CF=3根号2.
答案中的ED乘EC=EA乘EB 为什么可以成立,求解释
这是割线定理,你如没学过也可以证明两个三角形相似得到.
再问: 专业,多谢了
再问: 专业,多谢了
如图已知四边形ABCD内接于圆O AB//CD ,过点B作圆O的切线交DC的延长线于点E.求证:DA二次方=AB×EC
已知:四边形ABCD内接于圆O,AB与DC的延长线交于E点,AD与BC的延长线交于F点.求证:AE·BF=AF·DE
四边形ABCD中,CD平行于AB,E是AD中点,CE交BA延长线于点F,BC等于BF,试说明BE垂直于CF
四边形ABCD内接于圆o,AB,CD延长线交于点E,角AED的角平分线分别交BC,AD于点F
如图,已知在四边形ABCD中,AD∥BC,AD>BC,AB=DC,EA=ED,EB,EC分别交AD于点F,G
四边形ABCD中,AB=CD,BC=AD,O为BD的中点,EF过点O,且BD垂直于EF交BA,DC的延长线于E,F
已知:如图,圆o中,AB是直径,BC=CF,弦CD垂直AB于点D交BF于F,求证:BE=EC
已知AB,CD交于点O,AD,CB交延长线交于E,OA=OC,EA=EC求证:角A=角C
如图,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,延长EF分别与BA的延长线交于点H,与CD的延长线交
如图 四边形ABCD内接于圆O ,AB,DC的延长线交于E,角AED的平分线分别交BC,AD于F,G 求证角GFC=角D
已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交
已知四边形ABCD内接于圆O,AB与CD的延长线交于点E,AD与BC的延长线交于点F,EG、FG分别是角AEC和角AFC