已知函数f(x)=x+a^2/x,g(x)=x+lnx,其中a>0.(1)若x=1是函数h(x)=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 01:45:41
已知函数f(x)=x+a^2/x,g(x)=x+lnx,其中a>0.(1)若x=1是函数h(x)=
已知函数f(x)=x+a^2/x,g(x)=x+lnx,其中a>0.
(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值
(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.
已知函数f(x)=x+a^2/x,g(x)=x+lnx,其中a>0.
(1)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值
(2)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.
(1)h(x)=f(x)+g(x)=x+a^2/x+x+lnx,x>0
∴h‘(x)=1-a²/x²+1+1/x=(2x²+x-a²)/x²,x>0
∵x=1是函数h(x)的极值点
∴h’(1)=2+1-a²=0,a=±√3
又∵a>0,∴a=√3
(2)g‘(x)=1+1/x=(x+1)/x
令g’(x)=0,解得x=-1
∴g(x)在x∈[1,e]上单调递增,且在x=e处取得极大值g(e)=e+1
∵f(x1)>g(x2)对任意的x1,x2∈[1,e]恒成立
∴f(x)min>e+1,x∈[1,e]
f‘(x)=1-a²/x²=(x²-a²)/x²
令f’(x)=0,解得x=±a
1°当a≤1时,f(x)在x∈[1,e]上单调递增
∴f(x)在x=1处取得极小值f(1)=1+a²
∵1+a²>e+1,∴a>√e或a<-√e(舍)
又∵a≤1,∴不成立
2°当a≥e时,f(x)在x∈[1,e]上单调递减
∴f(x)在x=e处取得极小值f(e)=e+a²/e
∵e+a²/e>e+1,∴a>√e或a<-√e(舍)
又∵a≥e,∴a∈[e,+∞)
3°当a∈(1,e)时,f(x)在x∈[1,a)上单调递减,在x∈(a,e]上单调递增
∴f(x)在x=a处取得极小值f(a)=a+1
∵a+1>e+1,∴a>e
又∵a∈(1,e),∴不成立
综上所述,a∈[e,+∞)
∴h‘(x)=1-a²/x²+1+1/x=(2x²+x-a²)/x²,x>0
∵x=1是函数h(x)的极值点
∴h’(1)=2+1-a²=0,a=±√3
又∵a>0,∴a=√3
(2)g‘(x)=1+1/x=(x+1)/x
令g’(x)=0,解得x=-1
∴g(x)在x∈[1,e]上单调递增,且在x=e处取得极大值g(e)=e+1
∵f(x1)>g(x2)对任意的x1,x2∈[1,e]恒成立
∴f(x)min>e+1,x∈[1,e]
f‘(x)=1-a²/x²=(x²-a²)/x²
令f’(x)=0,解得x=±a
1°当a≤1时,f(x)在x∈[1,e]上单调递增
∴f(x)在x=1处取得极小值f(1)=1+a²
∵1+a²>e+1,∴a>√e或a<-√e(舍)
又∵a≤1,∴不成立
2°当a≥e时,f(x)在x∈[1,e]上单调递减
∴f(x)在x=e处取得极小值f(e)=e+a²/e
∵e+a²/e>e+1,∴a>√e或a<-√e(舍)
又∵a≥e,∴a∈[e,+∞)
3°当a∈(1,e)时,f(x)在x∈[1,a)上单调递减,在x∈(a,e]上单调递增
∴f(x)在x=a处取得极小值f(a)=a+1
∵a+1>e+1,∴a>e
又∵a∈(1,e),∴不成立
综上所述,a∈[e,+∞)
已知函数f(x)=1/2x^2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)=3x,其中a∈R且
已知函数f(x=x+a^2/x,g(x)=lnx.其中a>0 )若x=1是函数h(x)=f(x)+g(x)的极值点,求实
已知函数f(x)=lnx+a/x,g(x)=x,F(x)=f(1+e的x次方)-g(x),x属于R
已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)
已知函数f(x)=lnx,g(x)=1/2ax²+2x,a≠0.(1)若函数h(x)=f(x)-g(x)存在单
已知函数f(x)=lnx,g(x)=ax^2+3X (1)若a=2,求h(x)=f(x)-g(x)
已知函数f(x)=lnx-(a/x),g(x)=e^x(ax+1),a为常数
已知函数f(x)=lnx,g(x)=1/2ax^2+2x,a≠0...
已知函数f(x)=lnx,g(x)=1/2ax^2+2x.若h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围
已知函数f(x)=1/2x2+alnx,g(x)=(a+1)x(a≠-1),H(x)=f(x)-g(x).
已知函数f(x)=x+ax(a∈R),g(x)=lnx
已知函数f(x)=lnx-x,h(x)=lnx/x.