设f(x)=x3+log2(x+x2+1),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的( )
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 15:15:03
设f(x)=x
f(x)=x3+log2(x+
x2+1),f(x)的定义域为R
∵f(-x)=-x3+log2(-x+
x2+1)=-x3+log2
1
x+
x2+1
=-x3-log2(x+
x2+1)=-f(x).
∴f(x)是奇函数
∵f(x)在(0,+∞)上是增函数
∴f(x)在R上是增函数
a+b≥0可得a≥-b
∴f(a)≥f(-b)=-f(b)
∴f(a)+f(b)≥0成立
若f(a)+f(b)≥0则f(a)≥-f(b)=f(-b)由函数是增函数知
a≥-b
∴a+b≥0成立
∴a+b≥0是f(a)+f(b)≥0的充要条件.
x2+1),f(x)的定义域为R
∵f(-x)=-x3+log2(-x+
x2+1)=-x3+log2
1
x+
x2+1
=-x3-log2(x+
x2+1)=-f(x).
∴f(x)是奇函数
∵f(x)在(0,+∞)上是增函数
∴f(x)在R上是增函数
a+b≥0可得a≥-b
∴f(a)≥f(-b)=-f(b)
∴f(a)+f(b)≥0成立
若f(a)+f(b)≥0则f(a)≥-f(b)=f(-b)由函数是增函数知
a≥-b
∴a+b≥0成立
∴a+b≥0是f(a)+f(b)≥0的充要条件.
设f(x)是定义在实数R上的函数.满足f(0)=1且对任意实数ab都有f(a)-f(a-b)=b(2a-b+1),则f(
设f(x)是定义在实数集R上的函数,满足f(0)=1,且对任意实数a、b,有f(a-b)=f(a)-b(2a-b+1),
设f(x)是定义在实数集R上的函数,满足f(0)=1,且对任意实数a,b,有 f(a-b)=f(a)-b(2a-b+1)
设f(x)的定义域在实数集R上的函数,满足f(0)=1,且对任意实数ab都有f(a-b)=f(a)-b(2a-b+1),
1设f(x)是定义在实数集R上的函数,满足f(0)=1,且对任意实数a,b
函数f(x)的定义域为u(a,b),且对其内任意实数x1,x2均有(x1-x2)[f(x1)-f(x2)]>0,则f(x
对于任意实数a,b,定义min{a,b}={a,a≤b,{b,a>b.设函数f(x)=0x+3,g(x)=log2 x,
设函数f(x)=ax^2+bx+1(a、b∈R)满足:f(-1)=0,且对任意实数f(x)≥0恒成立:(1)求f(x)的
定义在R上的函数f(x)满足f(0)=1,且对任意实数a,b有f(a-b)=f(a)-b(2a-b+1),求f(x)的解
函数f(x)的定义域为(a,b),且对其内任意实数x1,x2均有:(x1-x2)[f(x1)-f(x2)]<0,则f(x
如果函数f(x)的定义域为R,对任意实数a b满足f(a+b)=f(a)*f(b),设f(1)=k 求f(10)
函数f(x)对任意的a b属于实数,都有f(a+b)=f(a)+f(b)—1,且当x大于0,f(x)大于1,问:(1)求