作业帮 > 数学 > 作业

求详解:y=tan(2x+pai/3)-tan(pai/6-2x)的最小正周期

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 22:50:37
求详解:y=tan(2x+pai/3)-tan(pai/6-2x)的最小正周期
求详解,
求详解:y=tan(2x+pai/3)-tan(pai/6-2x)的最小正周期
∵2x+π/3+π/6-2x=π/2
∴y=tan(2x+π/3)-tan(π/6-2x)
=tan(2x+π/3)-cot[π/2-(π/6-2x)]
=tan(2x+π/3)-cot(2x+π/3)
=sin(2x+π/3)/cos(2x+π/3)-cos(2x+π/3)/sin(2x+π/3)
=[sin²(2x+π/3)-cos²(2x+π/3)]/sin(2x+π/3)cos(2x+π/3)
=-2cos2(2x+π/3)/sin2(2x+π/3)
=-2cos(4x+2π/3)/sin(4x+2π/3)
=-2cot(4x+2π/3)
∴y=tan(2x+pai/3)-tan(pai/6-2x)的最小正周期T=π/4