抛物线方程为y^2=4x,过点(0,-2)得直线与抛物线相交于不同的两点A、B,求以OA、OB为相邻两边的平行四边形OA
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 12:29:49
抛物线方程为y^2=4x,过点(0,-2)得直线与抛物线相交于不同的两点A、B,求以OA、OB为相邻两边的平行四边形OACB的第四个顶点C的轨迹,并说明是什么直线,
你x1+x2算错了吧,应该是4k-4/k^2
你x1+x2算错了吧,应该是4k-4/k^2
过(0,-2)的方程是y=kx-2
与抛物线联立可以解得A(x1,y1)B(x2,y2)
x1+x2=(4k+4)/k^2
y1+y2=4/k
AB中点的坐标是是(x1+x2/2,y1+y2/2)
那么C点坐标就是(x1+x2,y1+y2)
即((4k+4)/k^2,k/4)
那么C的轨迹是
y^2+2y=x
化为(y+1)^2=1+x,是一条抛物线啊
与抛物线联立可以解得A(x1,y1)B(x2,y2)
x1+x2=(4k+4)/k^2
y1+y2=4/k
AB中点的坐标是是(x1+x2/2,y1+y2/2)
那么C点坐标就是(x1+x2,y1+y2)
即((4k+4)/k^2,k/4)
那么C的轨迹是
y^2+2y=x
化为(y+1)^2=1+x,是一条抛物线啊
抛物线X^2=4y 与过点M(0,2)的直线L相交于A.B两点,O为坐标原点,若直线OA与OB的斜率之和为2,求直线方程
过点P(0,2)的直线交抛物线y^2=4x于A,B两点,求以OA,OB为邻边平行四边形OAMB的定点M的轨迹方程
过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,若以OA,OB为两边作平行四边形OAPB
抛物线x^2=-2y与过点A M(0,-1)的直线l相交于A,B两点,O为坐标原点,若直线OA和OB的斜率和为1,求直线
抛物线y=-1/2x^2与过点M(0,-1)的直线相交与A`B两点,O为原点若OA,OB的斜率和为1,求直线L的方程
抛物线y=-x^/2与过点M(0,-1)的直线相交于AB两点,O为坐标原点,若直线OA和OB的斜率之和为1,求直线的方程
抛物线y=-x^2/2与过点M(0,1)的直线l交于A,B两点,O为原点,若OA和OB的斜率之和为1,求直线l的方程
给定抛物线C:y^2=4x,F是C的焦点,过点F的直线L与C相交于A,B两点,记O为坐标原点.求1、OA向量*OB向量的
给定抛物线,C:y^2=4x,F是C的焦点,过点F的直线L与C相交于A,B两点,记O为坐标原点,求向量OA乘以向量OB的
已知抛物线C:y^2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(1)设l的斜率为1,求向量OA和向量OB
如图所示,过点P (0,-2)的直线l交抛物线y2=4x于A,B两点,求以OA,OB为邻边的平行四边形OAMB
已知直线y=kx+1与圆x^2+y^2=4相交于A,B两点,以OA,OB为邻边作平行四边形OAPB,求点P的轨迹方程