急.n=1/4*(2/3)^n-1 ,求证,数列bn中的任意三项不可能成等差数列.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 14:02:39
急.
n=1/4*(2/3)^n-1 ,求证,数列bn中的任意三项不可能成等差数列.
n=1/4*(2/3)^n-1 ,求证,数列bn中的任意三项不可能成等差数列.
设bm=1/4*(2/3)^m-1,bn=1/4*(2/3)^n-1,bk=1/4*(2/3)^k-1,且m>n>k 为数列bn中的任意三项
若bm、bn、bk成等差数列,则只需要2bn=bm+bk,将所设代入可得,2*(2/3)^n=(2/3)^m+(2/3)^k
同乘3^m 得 2*2^n*3^(m-n)=2^m+2^k*3^(m-k),再两边同除2^k,得
2*2^(n-k)*3^(m-n)=2^(m-k)+3^(n-k)
显然 等式左边是偶数,右边为奇数,不能成立.故bm、bn、bk不能成等差数列
若bm、bn、bk成等差数列,则只需要2bn=bm+bk,将所设代入可得,2*(2/3)^n=(2/3)^m+(2/3)^k
同乘3^m 得 2*2^n*3^(m-n)=2^m+2^k*3^(m-k),再两边同除2^k,得
2*2^(n-k)*3^(m-n)=2^(m-k)+3^(n-k)
显然 等式左边是偶数,右边为奇数,不能成立.故bm、bn、bk不能成等差数列
数列的题,求证:等比数列an=(2/3)^n-2任意三项不可能构成等差数列
设数列an中的前n项的和为Sn,并且a1=1,Sn+1=4an+2,设bn=an比2的n次方,求证数列bn为等差数列
已知数列{an}是等差数列,且bn=an+a(n-1),求证bn也是等差数列
已知正项数列{an},{bn}满足:对任意正整数n,都有an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+
已知数列an的前n项和为sn=5/6n(n+3),1:求证an为等差数列 2:设bn=a3n+a
已知数列an是等差数列,且bn=an+a(n+1).求证数列bn是等差数列.
已知数列{An}是等差数列,且Bn=An+A(n+1).求证数列{Bn}是等差数列
已知数列{an}中a1=-1且(n+1)an,(n+2)an+1(是下标)成等差数列,设bn=(n+1)an-n+2求证
在数列{an}中,a1=1,An+1=1-1/4an,bn=1/2an-1,其中n∈N*求证{bn}为等差数列
已知数列{an}满足a1+a/4,(1-an)a(n+1)=1/4,令bn+an-1/2 求证数列{1/bn}为等差数列
已知数列an满足a1=4 an=4-4/an-1(n大于等于2) 求证bn是等差数列 求数列an的通项公式
已知正项数列{an}{bn}满足,对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列