作业帮 > 数学 > 作业

急.n=1/4*(2/3)^n-1 ,求证,数列bn中的任意三项不可能成等差数列.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 14:02:39
急.
n=1/4*(2/3)^n-1 ,求证,数列bn中的任意三项不可能成等差数列.
急.n=1/4*(2/3)^n-1 ,求证,数列bn中的任意三项不可能成等差数列.
设bm=1/4*(2/3)^m-1,bn=1/4*(2/3)^n-1,bk=1/4*(2/3)^k-1,且m>n>k 为数列bn中的任意三项
若bm、bn、bk成等差数列,则只需要2bn=bm+bk,将所设代入可得,2*(2/3)^n=(2/3)^m+(2/3)^k
同乘3^m 得 2*2^n*3^(m-n)=2^m+2^k*3^(m-k),再两边同除2^k,得
2*2^(n-k)*3^(m-n)=2^(m-k)+3^(n-k)
显然 等式左边是偶数,右边为奇数,不能成立.故bm、bn、bk不能成等差数列