作业帮 > 数学 > 作业

如图,O是△ABC的外心,弦AB的垂直平分线与AB和AC分别相交于点M、N,与BC边的延长线相交于点P,求证:OA2=O

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 00:48:55
如图,O是△ABC的外心,弦AB的垂直平分线与AB和AC分别相交于点M、N,与BC边的延长线相交于点P,求证:OA2=ON•OP.
如图,O是△ABC的外心,弦AB的垂直平分线与AB和AC分别相交于点M、N,与BC边的延长线相交于点P,求证:OA2=O
证明:连接OB;
∵PM垂直平分AB,
∴OA=OB,AM=BM,OM⊥AB;
∴∠AOM=∠BOM=
1
2∠AOB;
∵∠ACB=
1
2∠AOB,∴∠ACB=∠AOM;
∴∠NAO+∠ANO=∠P+∠PNC;
∵∠PNC=∠ANO,∴∠P=∠NAO;
∵∠AOM=∠MOB,
∴∠AON=∠BOP;
∴△ANO∽△PBO,

ON
OB=
OA
OP,即OA•OB=OP•ON;
∵OA=OB,
∴OA2=ON•OP.