如图,在正方形ABCD中,F是边BC上一点(点F与点B、点C均不重合),AE⊥AF,AE交CD的延长线于点E,连接EF交
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 07:03:21
如图,在正方形ABCD中,F是边BC上一点(点F与点B、点C均不重合),AE⊥AF,AE交CD的延长线于点E,连接EF交AD于点G.
(1)求证:BF•FC=DG•EC;
(2)设正方形ABCD的边长为1,是否存在这样的点F,使得AF=FG.若存在,求出这时BF的长;若不存在,请说明理由.
(1)求证:BF•FC=DG•EC;
(2)设正方形ABCD的边长为1,是否存在这样的点F,使得AF=FG.若存在,求出这时BF的长;若不存在,请说明理由.
(1)证明:∵正方形ABCD,
∴AB=AD,∠ABC=∠ADE=90°,∠BAD=90°(1分)
又∵AE⊥AF,∴∠EAF=90°
∴∠BAD=∠EAF,即∠BAF+∠FAD=∠EAD+∠DAF
∴∠BAF=∠EAD(1分)
∴△BAF≌△EAD,∴BF=DE.(1分)
∵AD∥BC,
∴
DG
FC=
ED
EC.∴
DG
FC=
BF
EC.(2分)
∴BF•FC=DG•EC.(1分)
(2)设BF=x,则FC=1-x,EC=1+x,
若AF=FG,则∠FAG=∠FGA
∵AD∥BC,∴∠BFA=∠FAG,∠CFE=∠FGA
∴∠BFA=∠CFE,(1分)
又∠ABF=∠ECF=90°
∴△ABF∽△ECF.(1分)
∴
BF
AB=
FC
EC,即:
x
1=
1−x
1+x.(2分)
∴x2+2x-1=0.(1分)
解得:x=
2−1.(负根舍去)(1分)
(注:求解的方法很多,参照上述步骤给分.)
∴AB=AD,∠ABC=∠ADE=90°,∠BAD=90°(1分)
又∵AE⊥AF,∴∠EAF=90°
∴∠BAD=∠EAF,即∠BAF+∠FAD=∠EAD+∠DAF
∴∠BAF=∠EAD(1分)
∴△BAF≌△EAD,∴BF=DE.(1分)
∵AD∥BC,
∴
DG
FC=
ED
EC.∴
DG
FC=
BF
EC.(2分)
∴BF•FC=DG•EC.(1分)
(2)设BF=x,则FC=1-x,EC=1+x,
若AF=FG,则∠FAG=∠FGA
∵AD∥BC,∴∠BFA=∠FAG,∠CFE=∠FGA
∴∠BFA=∠CFE,(1分)
又∠ABF=∠ECF=90°
∴△ABF∽△ECF.(1分)
∴
BF
AB=
FC
EC,即:
x
1=
1−x
1+x.(2分)
∴x2+2x-1=0.(1分)
解得:x=
2−1.(负根舍去)(1分)
(注:求解的方法很多,参照上述步骤给分.)
如图在平行四边形ABCD中,点E在CD边上运动(不与C、D两点重合),连接AE并延长与BC的延长线交于点F.连接BE、D
在正方形ABCD中,F是BC上一点,EA⊥AF,AE交CD的延长线于点E,联结EF交AD于点G,求证:BF*FC=DG*
如图,正方形ABCD的边长为1,当点E在边BC上运动时(不与正方形的顶点重合),连接AE,过点E作EF垂直AE交CD于点
在正方形ABCD中,AD=6,E是CD中点,M是AE上的一点,MF⊥AE,交AB的延长线于F,连接EF交BC于点P...
在正方形ABCD中,F是BC上一点,EA垂直AF,AE交CD的延长线于点E,联结EF交AD于点G 求证:BF*FC=DG
如图,在正方形ABCD中,点F为CD上一点,AF交BD于H,EH⊥AF交BC于E,连AE
在正方形ABCD中,E为对角线BD上的一点连接AE并延长交CD于点F交BC的延长线于点G求证AE的平方=EF*EG
如图,在正方形ABCD中,E为AB边上一点,过点D作DF⊥DE,与BC的延长线交于点F,连接EF,与CD边交于点G,与对
如图,在正方形ABCD中,点E是边AB上一点(点E与A、B不重合),过点E作FG⊥DE,FG与边BC交于点F,与边DA的
如图,正方形ABCD中,E是BC上一点,连接AE,过点E作AE的垂线分别交CD,AB的延长线于点F,G.
如图15,正方形中ABCD中,E为AB上一点,过D点作DF⊥DE,与BC延长线交于点F,连接EF,与CD边交于点G,与对
如图,在正方形ABCD中,点E是CD边上一动点(点E不与端点C、D重合)AE的垂直平分线FP交AD于F,交CB于G,交A