设数列a1,a2,a3...,an,...中的每一项都不为0.证明:{an}为等差数列的充分必要条件是:对任何n属于N,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 18:13:42
设数列a1,a2,a3...,an,...中的每一项都不为0.证明:{an}为等差数列的充分必要条件是:对任何n属于N,都有1/a1*a2+1/a2*a3+...1/an*an+1=n/a1*an+1
先证必要性
若为等差数列,则a1=a 差为d
1/(a1a2)+1/(a2a3)+……1/(anan+1)=1/a(a+d)+1/(a+d)(a+2d)+……1/(a+(n-1)d)(a+nd)
裂项得=(1/d)*(1/a-1/(a+d)+1/(a+d)……-1/(a+(n-1)d)+1/(a+(n-1)d)-1/(a+nd)=(1/d)*(1/a-1/(a+nd))=n/a(a+nd)=n/a1*an+1
再证充分性由
1/a1*a2+1/a2*a3+...1/an*an+1=n/a1*an+1
1/a1*a2+1/a2*a3+...1/an-1*an=n/a1*an
两式相减得
1/(an*an+1)=n/a1*an+1-n/a1*an
-->nan-(n-1)an+1=a
又可得(n-1)an-1-(n-2)an=a
再两式相减得(2n-2)an-(n-1)(an-1+an+1)=0
2an-an-1-an+1=0
-->an+1-an=an-an-1得证
若为等差数列,则a1=a 差为d
1/(a1a2)+1/(a2a3)+……1/(anan+1)=1/a(a+d)+1/(a+d)(a+2d)+……1/(a+(n-1)d)(a+nd)
裂项得=(1/d)*(1/a-1/(a+d)+1/(a+d)……-1/(a+(n-1)d)+1/(a+(n-1)d)-1/(a+nd)=(1/d)*(1/a-1/(a+nd))=n/a(a+nd)=n/a1*an+1
再证充分性由
1/a1*a2+1/a2*a3+...1/an*an+1=n/a1*an+1
1/a1*a2+1/a2*a3+...1/an-1*an=n/a1*an
两式相减得
1/(an*an+1)=n/a1*an+1-n/a1*an
-->nan-(n-1)an+1=a
又可得(n-1)an-1-(n-2)an=a
再两式相减得(2n-2)an-(n-1)(an-1+an+1)=0
2an-an-1-an+1=0
-->an+1-an=an-an-1得证
设数列a1,a2,a3...,an,...中的每一项都不为0.证明:{an}为等差数列的充分必要条件是:对任何n属于N,
设数列a1,a2,a3...,an,...中的每一项都不为0.证明:{an}为等差数列的充分
2010年高考安徽数学理科卷20题:设数列a1,a2,…,an,…中的每一项都不为0.证明:{an}为等差数列的充分必要
设an是等差数列,求证以bn=(a1+a2+a3+…+an)/n,n属于N+为通项公式的数列bn是等差数列
证明:N维向量组a1,a2.an线性无关的充分必要条件是任意n维向量都可以表示为a1,a2.an的线性组合.
设数列{an}的前n项和为Sn,若对任意正整数,都有Sn=n(a1+an)/2,证明{an}是等差数列.
设{an}是等差数列,求证以b=(a1+a2+a3+...+an)/n为通项公式的数列{bn}是等差数列
设数列an是n为奇数的等差数列,且a1+a3+a5+...+an=55,a2+a4+a6+...+a(n-1)=44,则
设a1,a2.an属于R^n,证明a1,a2.an线性无关的充分必要条件是任意向量都可以由它们线性表示!主要是不会由a1
已知数列{an}满足a1=4,an+1=an+p.3^n+1(n属于N+,P为常数),a1,a2+6,a3成等差数列.
数列{an}中,a1*a2*a3...*an=n^2(n属于正整数),则a3+a5的值为
设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数列