作业帮 > 数学 > 作业

求和1/1*5 + 1/3*7 +1/5*9 +1/7*11+.+1/(2n-1)(2n+3)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 05:09:18
求和1/1*5 + 1/3*7 +1/5*9 +1/7*11+.+1/(2n-1)(2n+3)
如题 顺便说明一下原理
=1/3-(n+1)/(2n+1)(2n+3)
=n(4n+5)/3(2n+1)(2n+3) 请问这两步是怎么回事?
求和1/1*5 + 1/3*7 +1/5*9 +1/7*11+.+1/(2n-1)(2n+3)
1/(2n-1)(2n+3)=1/4*[1/(2n-1)-1/(2n+3)]
所以
1/1*5+1/3*7+1/5*9+1/7*11+.1/(2n-1)*(2n+3)
=1/4*(1-1/5)+1/4*(1/3-1/7)+1/4*(1/5-1/9)+1/4*(1/7-1/11)+1/4*[1/(2n-1)-1/(2n+3)]
=1/4*[(1-1/5)+(1/3-1/7)+(1/5-1/9)+(1/7-1/11)+.+1/(2n-1)-1/(2n+3)]
=1/4*[1+1/3+1/(2n+1)-1/(2n+3)]
=1/3-(n+1)/(2n+1)(2n+3)
=n(4n+5)/3(2n+1)(2n+3)