如图,△ABD和△ACE都是等腰直角三角形,∠BAD和∠CAE是直角,若AB=6,BC=5,AC=4,则DE的长为___
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 23:25:57
如图,△ABD和△ACE都是等腰直角三角形,∠BAD和∠CAE是直角,若AB=6,BC=5,AC=4,则DE的长为______.
如图,连接BE,交CD于F.
根据SAS可以证明△ADC≌△ABE,则∠ADC=∠ABE.则∠DBF+∠BDF=90°
则∠BFD=90°.根据勾股定理得:
DF2=BD2-BF2,EF2=CE2-CF2,BF2+CF2=BC2.
根据已知条件和勾股定理得BD=6
2,CE=4
2
所以DE2=DF2+EF2
=BD2-BF2+CE2-CF2
=BD2+CE2-(BF2+CF2)
=BD2+CE2-BC2
=72+32-25
=79,
∴DE=
79.
根据SAS可以证明△ADC≌△ABE,则∠ADC=∠ABE.则∠DBF+∠BDF=90°
则∠BFD=90°.根据勾股定理得:
DF2=BD2-BF2,EF2=CE2-CF2,BF2+CF2=BC2.
根据已知条件和勾股定理得BD=6
2,CE=4
2
所以DE2=DF2+EF2
=BD2-BF2+CE2-CF2
=BD2+CE2-(BF2+CF2)
=BD2+CE2-BC2
=72+32-25
=79,
∴DE=
79.
如图,已知在△ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC边
如图,已知三角形ABC外作等腰直角三角形ABD和等腰直角三角形ACE,且∠BAD=∠CAE=90°,AM为△ABC中BC
以△ABC的两边AB,AC为腰分别向外作等腰Rt△ABD和等腰Rt△ACE,∠BAD=∠CAE=90°,连接DE,M,N
如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G
如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC,DE相交于点F,BC与AD相交于点G
如图,以△ABC的边AB,AC为直角边向外作等腰直角三角形ABD和等腰直角三角形ACE,O为DE的中点,OA的延长线交
如图,以三角形ABC的边AB,AC为直角边向外作等腰直角三角形ABD和三角形ACE 求证BE=DC BE 垂直 CD
已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连接DE,设M为DE的中点.
已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连接DE,设M为DE的中点.
如图,在△ABD和△ACE中,∠BAD=∠CAE=90°,AD=AB,AC=AE.试猜想∠AFD和∠AFE的大小关系(图
已知:如图,分别以△ABC的两边AB和AC为直角边向形外作等腰直角三角形ABD和等腰三角形ACE
分别以△ABC的边AB、AC为直角边向外作等腰直角三角形△ABD和ACE.求证BE=DC,BE⊥CD