证明6x^5+11x^4+5x^3+5x^2-x-6能被x^2+1整除?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 02:54:58
证明6x^5+11x^4+5x^3+5x^2-x-6能被x^2+1整除?
提示:判断6x^5+11x^4+5x^3+5x^2-x-6是否含因式(x+i)(x-i)
提示:判断6x^5+11x^4+5x^3+5x^2-x-6是否含因式(x+i)(x-i)
6x^5+11x^4+5x^3+5x^2-x-6
=6x^5+6x^3+11x^4-x^3+5x^2-x-6
=6x^3(x^2+1)+11x^4+11x^2-x^3-6x^2-x-6
=6x^3(x^2+1)+11x^2(x^2+1)-(x^3+x)-(6x^2+6)
=6x^3(x^2+1)+11x^2(x^2+1)-x(x^2+1)-6(x^2+1)
所以,得证.
=6x^5+6x^3+11x^4-x^3+5x^2-x-6
=6x^3(x^2+1)+11x^4+11x^2-x^3-6x^2-x-6
=6x^3(x^2+1)+11x^2(x^2+1)-(x^3+x)-(6x^2+6)
=6x^3(x^2+1)+11x^2(x^2+1)-x(x^2+1)-6(x^2+1)
所以,得证.
(x-2)能整除3,(x-4)能整除5,(x-6)能整除7,(x-8)能整除9,x能整除11,试求x
|X-1|+|X-2|+|X-3|+|X-4|+|X-5|+|X-6|+|X-7|+|X-8|+|X-9|+|X-10|
确定m的值,使多项式f(x)=x^5+3x^4+8x^3+11x+m能被x+2整除
1.已知多项式x^4-5x^3+11x^2+mx+n能被x^2-2x+1整除,求m、n的值.
1、若x^2-x-1=0,求代数式x^5-5x+6的值 2、对同样整数x和y,2x+3y能被13整除说明5x+4y也一定
1x+2x+3x+4x+5x+6x+7x+8x+9x+10x+11x+12x+13x+14x+15x=550
x+2x+3x+4x+5x+6x+7x+8x+9x=9x-8x-7x-6x-5x-4x-3x-2x-x.x等于多少?
已知1+x+x^2+x^3=0,求x+x^2+x^3+x^4+x^5+x^6+x^7+x^8的值
y=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10)的导数在x=1
设函数f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10),
数学归纳法证明 x^(2n-1)+y^(2n-1) 能被X+Y整除 n3+5n能被6整除
解方程x/(x-2)=2x/(x-3)+(1-x)/(x-5x+6)