(2013•相城区模拟)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,DE⊥BD交AB于E,⊙O是△BDE的外
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 09:14:18
(2013•相城区模拟)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,DE⊥BD交AB于E,⊙O是△BDE的外接圆,交BC于点F
(1)求证:AC是⊙O的切线;
(2)连结EF,若BC=9,CA=12,求
(1)求证:AC是⊙O的切线;
(2)连结EF,若BC=9,CA=12,求
EF |
AC |
(1)∵DE⊥BD交AB于E,⊙O是△BDE的外接圆,
∴BE是⊙O的直径,点O是BE的中点,
连结OD,
∵∠C=90°,
∴∠DBC+∠BDC=90°,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵OB=OD,
∴∠ABD=∠ODB,
∴∠ODB+∠BDC=90°,
∴∠ODC=90°,
∵OD是⊙O的半径,
∴AC是⊙O的切线;
(2)设⊙O的半径为r,
在Rt△ABC中,AB2=BC2+CA2=92+122=225,
∴AB=15,
∵∠A=∠A,∠ADO=∠C=90°,
∴△ADO∽△ACB,
∴
AO
AB=
OD
BC,
∴
15−r
15=
r
9,
∴r=
45
8,
即BE=
45
4,
∵BE是⊙O的直径,
∴∠BFE=90°,
∴△BEF∽△BAC,
∴
EF
AC=
BE
BA=
45
4
15=
3
4,;
(3)连结OF,交BD于H,
∵F是弧BD的中点,OF是⊙O的半径,
∴BH=
1
2BD,∠BHO=90°,
∵FG⊥BE,
∴∠FGO=∠BHO=90°,
又∵OF=BO,∠FOG=∠BOH,
在△FOG和△BOH中,
∠FGO=∠BHO
∠FOG=∠BOH
OF=BO,
∴△FOG≌△BOH(AAS),
∴GF=BH=
1
2BD.
∴BE是⊙O的直径,点O是BE的中点,
连结OD,
∵∠C=90°,
∴∠DBC+∠BDC=90°,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∵OB=OD,
∴∠ABD=∠ODB,
∴∠ODB+∠BDC=90°,
∴∠ODC=90°,
∵OD是⊙O的半径,
∴AC是⊙O的切线;
(2)设⊙O的半径为r,
在Rt△ABC中,AB2=BC2+CA2=92+122=225,
∴AB=15,
∵∠A=∠A,∠ADO=∠C=90°,
∴△ADO∽△ACB,
∴
AO
AB=
OD
BC,
∴
15−r
15=
r
9,
∴r=
45
8,
即BE=
45
4,
∵BE是⊙O的直径,
∴∠BFE=90°,
∴△BEF∽△BAC,
∴
EF
AC=
BE
BA=
45
4
15=
3
4,;
(3)连结OF,交BD于H,
∵F是弧BD的中点,OF是⊙O的半径,
∴BH=
1
2BD,∠BHO=90°,
∵FG⊥BE,
∴∠FGO=∠BHO=90°,
又∵OF=BO,∠FOG=∠BOH,
在△FOG和△BOH中,
∠FGO=∠BHO
∠FOG=∠BOH
OF=BO,
∴△FOG≌△BOH(AAS),
∴GF=BH=
1
2BD.
(2013•南漳县模拟)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD交AB于点E,
在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E.圆o是三角形bde的外
如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于D,DE⊥AB于E,若DE=1cm,∠CBD=30°,求∠
如图,在RT△ABC中,∠C=90°,BD平分∠ABC,交AC于D,DE是斜边AB的垂直平分线,那么(1)DE=CD,为
如图,在Rt△ABC中,∠C=90°,DB平分∠ABC交AC于点D,DE是AB的垂直平分线AB. 若DE=1cm,BD=
如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E.
如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于E,若AB=10,求△BD
如图,已知在Rt△ABC中,∠C=90°,AE平分∠BAC,交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的
1.如图,在Rt△ABC中,∠BAC=90°AB=AC,BD平分∠ABC,与AC交于点D,CE⊥BD交BD的延长线与点E
初三数学解答题(圆)如图,在△ABC中,∠C=90°,BE平分∠ABC,DE⊥BE交AB于D,圆O是△BDE的外接圆(1
已知:如图,在RT△ABC中,∠C=90°,BD平分∠ABC,BD交AC于点D,DE⊥AB,且AD=2CD.求证;∠A=
在Rt△ABC中,∠C=90°,BD是∠B的角平分线,交AC于D,CE⊥AB于点E,交BD于O,过O作FG‖AB,交BC