已知直线l1:mx-y=0,l2:x+my-m-2=0 1求证:对m∈R,l1与l2的交点P在一个定圆上 2若l1、l2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 03:00:21
已知直线l1:mx-y=0,l2:x+my-m-2=0 1求证:对m∈R,l1与l2的交点P在一个定圆上 2若l1、l2与定圆的另外两
交点分别为P1,P2,求当m在实数范围内取值时,△PP1P2面积的最大值及对应的m值
最好有图.
交点分别为P1,P2,求当m在实数范围内取值时,△PP1P2面积的最大值及对应的m值
最好有图.
(1)
如图所示:
l1:mx-y=0,过定点(0,0),斜率kl1=m
l2:x+my-m-2=0,斜率kl2=-1/m
=>m(y-1)+x-2=0
令y-1=0,x-2=0
得y=1,x=2
∴l2过定点(2,1)
∵kl1•kl2=-1
∴直线l1与直线l2互相垂直
∴直线l1与直线l2的交点必在以(0,0),(2,1)为一条直径端点的圆上
且圆心(1,1/2),半径r=1/2√(2²+1²)=√5/2
∴圆的方程为(x-1)²+(y-1/2)²=5/4
即x²+y²-2x-y=0
(2)
由(1)得:
P1(0,0),P2(2,1)
当P点在定圆上移动时,△PP1P2的底边P1P2为定值2r
当三角形的高最大时,△PP1P2的面积最大
故S△PP1P2max=1/2•2r•r=5/4
又l1与l2的交点为P( (m+2)/(m²+1),[m(m+2)]/(m²+1) )
且OP与P1P2的夹角是45°
∴|OP|=√2 r=√10/2
即[(m+2)/(m²+1)]²+[ [m(m+2)]/(m²+1) ]²=5/2
解得:m=3或m=-1/3
故当m=3或m=-1/3时,△PP1P2的面积取得最大值5/4
如图所示:
l1:mx-y=0,过定点(0,0),斜率kl1=m
l2:x+my-m-2=0,斜率kl2=-1/m
=>m(y-1)+x-2=0
令y-1=0,x-2=0
得y=1,x=2
∴l2过定点(2,1)
∵kl1•kl2=-1
∴直线l1与直线l2互相垂直
∴直线l1与直线l2的交点必在以(0,0),(2,1)为一条直径端点的圆上
且圆心(1,1/2),半径r=1/2√(2²+1²)=√5/2
∴圆的方程为(x-1)²+(y-1/2)²=5/4
即x²+y²-2x-y=0
(2)
由(1)得:
P1(0,0),P2(2,1)
当P点在定圆上移动时,△PP1P2的底边P1P2为定值2r
当三角形的高最大时,△PP1P2的面积最大
故S△PP1P2max=1/2•2r•r=5/4
又l1与l2的交点为P( (m+2)/(m²+1),[m(m+2)]/(m²+1) )
且OP与P1P2的夹角是45°
∴|OP|=√2 r=√10/2
即[(m+2)/(m²+1)]²+[ [m(m+2)]/(m²+1) ]²=5/2
解得:m=3或m=-1/3
故当m=3或m=-1/3时,△PP1P2的面积取得最大值5/4
已知直线L1:mx-y=0,L2:x+my-m=0.(1)求证:对m属于R,L1与L2的交点P在一个定圆上; (1...
已知两直线l1:mx+8y+n=0和l2:2x+my-1=0,若l1垂直l2且l1在y轴上的截距为1,m=,n=
已知两直线L1:mx+8y+n=0和L2:2x+my-1=0.若L1垂直L2,且L1在y轴上的截距为1时,m=?n=?
已知直线l1:mx+y-1=0和直线l2:x+my-2m=0,当m= 时,l1平行于l2
已知两条直线l1 x+(1+m)y+m-2=0 l2 2mx+4y+6=0.求l1垂直l2时m的
已知两条直线L1:x+(1+m)y=2-m,L2:2mx+4y+16=0,为何值时L1与L2 1、相
已知两条直线L1:MX+8Y+N=0和L2:2X+MY-1=0.试确定M,N的值使L1垂直与L2,在Y轴上的截距为-1
已知直线L1:mx 8y n=0与L2:2x my-1=0互相平行,且L1与L2的距离为根号5,求m,n(m>0,n>0
1.已知,直线L1过点A(m,2),B(3,m),直线L2:2x+y+8=0若L1与L2平行,则m的值为 若L1与L2垂
已知直线l1:(m-2)x+3y+2m=0与l2:x+my+6=0,当l1平行于l2,m为?
已知里那条直线L1:mx+8y+n=0和L2:2x+my-1=0,试确定m,n的值,使:(1)L1∥L2 (2)L1⊥L
已知两条直线L1:x+(1+m)*y=2-m,L2:2mx+4y=-16.m为何值时,L1与L2