一道高数题.求导y=x的x次方+arctanx 求dy/dx
y=f[(x-1)/(x+1)],f'(x)=arctanx^2,求dy/dx,dy
若z=arctanx/y,证明xdz/dx+ydz/dy=0
设y=sin^2•e^arctanx.求dy/dx
设f x 为可导函数,y=f^2(x+arctanx),求dy/dx
微分方程(x+y)(dx-dy)=dx+dy的通解
解方程 x(dy/dx)^3=(1+dy/dx)
设y=f[(3x-2)/(3x+2)]且f'(x)=arctanx^2,则dy/dx|x=0的值多少
求微分方程dy/dx=-x/siny的解
求dy/dx=1/(x+y)的解
求方程的解ysinx+(dy/dx)cosx=1,
求dy/dx-(x-1)/y=0的解