设函数f(x)在区间【1,正无穷】是单调递减,f(x+1)是偶函数,判断f(1)与f(0)的大小
函数y=f(x)是偶函数,且在[0,正无穷)上是单调减函数,则f(-3)与f(1)的大小关系
设函数f(x)=x-2/x-1 1.用定义证明函数f(x)在区间(1,正无穷)上是单调递减函数
设偶函数f(x)=log a |x+b| 在(0,正无穷大)上单调递减,则f(b-2)与f(a+1)的大小关系
y=f(x)是偶函数,在【0,正无穷)上是减函数,则f(1-x^2)的单调递增区间是
定义为R上的偶函数f(x)在区间[0,正无穷)上单调递减,若f(1)
设函数y=f(x)是定义在(0,正无穷)上的单调递减函数,且f(x*y)=f(x)+f(y) f(1/3)=1
已知偶函数f(x)=loga I x+b I 在(0,+无穷)上单调递减,则f(b - 2)与f(a+1)的大小关系是(
已知定义在R上的偶函数f(X)在区间[0,正无穷)上是单调减函数,若f(1-x)<f(x),则实数x的取值范围
定义在R函数y=f(x)为偶函数,且在[0,正无穷大)上单调递减,是比较f(1),f(-2),f(3)的大小
函数及性质已知函数f(x)是定义在r上的偶函数,且在区间【0,正无穷】上单调递减,若实数a满足f(log2a)+f(lo
函数f(x)是定义域R上的偶函数,且X属于(0,正无穷)上单调递减,则解不等式f(x)>=f(-2)
已知函数f(x)=xLnx. (1:求函数f(x)的单调递减区间.(2:f(x) >= -x方+ax-6在(0,正无穷)