作业帮 > 数学 > 作业

在矩形ABCD中,P是AD边上任一点,PQ垂直AC,PR垂直BD,DT垂直AC,问PQ、PR、DT三条线段能否组成三角平

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 10:31:56
在矩形ABCD中,P是AD边上任一点,PQ垂直AC,PR垂直BD,DT垂直AC,问PQ、PR、DT三条线段能否组成三角平,说明理由.
在矩形ABCD中,P是AD边上任一点,PQ垂直AC,PR垂直BD,DT垂直AC,问PQ、PR、DT三条线段能否组成三角平
不能 因为 PQ + PR = DT
先 延长 BA 至 A’ 点 使得 AA’ = AB
延长 CD 至 D’ 点 使得 DD’ = CD
连接 C’D’那么就形成两个矩形 他们的共同边是 AD
做两个矩形的 对角线
易得 DA’∥ AC ;AD’∥ BD
延长PQ交 DA’ 于 O点,
所以 PO⊥DA’
所以 ∠POD = ∠PRD = 90°
∠PDO = ∠PDR
PD = PD
所以△POD ≌ △PRD
即 PO = PR
所以 PQ + PR = PQ + PO = OQ
因为 DT ⊥ AC
所以 DT∥OQ
所以 四边形OQTD 是平行四边形
所以 OQ = DT
即 PQ + PR = DT
即不能构成三角形