作业帮 > 数学 > 作业

证明:以三角形三边上的中线为边可以作成一个三角形

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 13:20:41
证明:以三角形三边上的中线为边可以作成一个三角形
证明:以三角形三边上的中线为边可以作成一个三角形
证明:取三角形ABC,D,E,F分别是BC,AC,AB的中点,连结AD,BE,CF.即证:AD,BE,CF可以作成一个三角形.
过A作AP//BE,AP=BE,连结PD交BE于Q.现证明:PD=CF.
由AP//BE,则:角PAE=角BEC.
又:AE=EC,AP=EB,则:三角形APE全等于三角形EBC.
则:PE=BC,角PEA=角BCE.
则:PE//BC.
连结EF,由:AE=CE,AF=BF,则:EF//BC,EF=BC/2.
则:F在PE上(过E有且只有一条直线与BC平行).
又:CD=BC/2,EP=CB,PF=PE-EF=BC-BC/2=BC/2=CD,PF//PE//BC//CD.
则:四边形PFCD是平行四边形.
则:PD=CF,且PD//CF.
则三角形APD是三角形ABC的三条中线构成的.