作业帮 > 数学 > 作业

椭圆上存在一点P,它到椭圆中心和长轴一个端点的连线互相垂直,求离心率范围.(简单方法,不用参数方程)

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 01:13:58
椭圆上存在一点P,它到椭圆中心和长轴一个端点的连线互相垂直,求离心率范围.(简单方法,不用参数方程)
答案是(√2/2,1),用通径的一半大于圆的半径就可以直接算出来,但怎么证明?
椭圆上存在一点P,它到椭圆中心和长轴一个端点的连线互相垂直,求离心率范围.(简单方法,不用参数方程)
半长轴的平方=半短轴的平方+半焦距的平方 离心率=半焦距/半长轴
又在题中(设半长轴端点为A),PO与PA垂直,则PO^2+PA^2=半短轴的平方+半焦距的平方
即离心率=PO/AO 又AO^2=PO^2+PA^2>=2POPA当PO=PA时成立
此时AO^2>=2PO^2 则PO/AO>=√2/2=离心率
又离心率
已知A是椭圆长轴的一个端点,O是中心,若椭圆上存在一点P有OP垂直于AP,求椭圆离心率的取值范围. 已知椭圆中心在原点,它在x轴上的一个焦点与短轴两个端点的连线互相垂直,且此焦点和长轴上较近端点的距离是√10-√5,求椭 设椭圆x2/a2+y2/b2=1(a>b>0)上任意一点p,它与两个焦点的连线互相垂直,求离心率的取值范围 已知椭圆的中心在坐标原点,它在x轴上的一个焦点F与短轴B1B2两端点的连线互相垂直,且F和长轴较近的端点A的距离是√10 设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点P(0,)到这个椭圆上的点的最远距离是,求这个椭圆的方程,并求椭圆上到 若在椭圆上存在一点P,求椭圆离心率的取值范围 已知椭圆中心在原点,它在x轴上的一个焦点与短轴两个端点的连线互相垂直,且此焦点和长轴上较近端点的距离是√10-√5. P为椭圆X2/a2+ y2/b2=1上任意一点,它与两个焦点的连线互相垂直,且P到两准线距离分别为6,12,求椭圆方程 已知椭圆的中心在原点,它在X轴上的一个焦点与短轴两端点连线互相垂直,此焦点和X轴上的较近端点的距离... 椭圆的中心在圆点,焦点在X轴上,一个焦点与短轴两端点的连线互相垂直,且这个焦点到较近的端点A的距离是根号10-根号5,求 设在椭圆X^2/a^2+Y^2/b^2=1(a>b>0)上有一点P,它与两个焦点的连线互相垂直,求这个椭圆的离心率. 焦点在x轴上的椭圆,p为椭圆上的任意一点,存在∠F1pF2=90°,求离心率e的取值范围