F1,F2是椭圆4y^2+5x^2=20的两个焦点,P为椭圆上一点,且角F1PF2=30°,则三角形F1PF2的面积为?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 12:07:06
F1,F2是椭圆4y^2+5x^2=20的两个焦点,P为椭圆上一点,且角F1PF2=30°,则三角形F1PF2的面积为?(要是解余弦定理,最好有别的方法)
4y^2+5x^2=20
即x^2/4+y^2/5=1
a^2=5,b^2=4,c^2=a^2-b^2=5-4=1
令F1P=x,则F2P=2√5-x
利用余弦定理得
F1F2^2=F1P^2+F2P^2-2F1P*F2P*cos角F1PF2
4=(F1P+F2P)^2-2F1P*F2P-2F1P*F2P*cos30度
=20-(2+√3)F1P*F2P
F1P*F2P=16/(2+√3)
利用正弦定理有面积=1/2*F1P*F2P*sin角F1PF2=1/4*16/(2+√3)=4(2-√3)
即x^2/4+y^2/5=1
a^2=5,b^2=4,c^2=a^2-b^2=5-4=1
令F1P=x,则F2P=2√5-x
利用余弦定理得
F1F2^2=F1P^2+F2P^2-2F1P*F2P*cos角F1PF2
4=(F1P+F2P)^2-2F1P*F2P-2F1P*F2P*cos30度
=20-(2+√3)F1P*F2P
F1P*F2P=16/(2+√3)
利用正弦定理有面积=1/2*F1P*F2P*sin角F1PF2=1/4*16/(2+√3)=4(2-√3)
F1,F2是椭圆4y^2+5x^2=20的两个焦点,P为椭圆上一点,且角F1PF2=60°,则三角形F1PF2的面积为?
已知F1,F2是椭圆x^2/4+y^2=1的两个焦点,P为椭圆上一点,角F1PF2=60°,求三角形F1PF2的面积.
F1和F2为椭圆x^2/16+y^2/7=1焦点,P在椭圆上且角F1PF2=30度,求三角形F1PF2面积.
点P事椭圆X^2/25+Y^2/9=1上的一点,F1,F2为焦点,角F1PF2=60°,求F1PF2的面积
已知P是椭圆x^2/4+y^2=1上的一点,F1,F2是椭圆的两个焦点且∠F1PF2=60度求三角形F1PF2的面积
设F1,F2,是椭圆x^2/36+y^2/24=1的两个焦点,P为椭圆上的一点,已知角F1PF2=60°,
点P是椭圆x^2|25+y^2|16=1上的一点,F1,F2是其焦点,若角F1PF2=30°,则三角形F1PF2
若P是椭圆x^2/4+y^2=1上的一点,F1,F2是椭圆的两个焦点,且∠F1PF2=60度,则△F1PF2的面积是__
P是椭圆x2/9+y2/4=1上的一点,F1,F2为焦点,且角F1PF2=30度,求F1PF2的面积.
已知P为椭圆x^2/25 +y^2/9=1上一点,F1、F2是椭圆的两个焦点,角F1PF2=60度,求△F1PF2的面积
一直点P是椭圆5分之X方加4分之Y方等于1上一点F1 F2为左右焦点且角F1PF2等于30度求三角形F1PF2的面积
已知p为椭圆x^2/25+4y^2/75=1上一点,F1,F2是椭圆的焦点,角F1PF2=60度,求三角形F1PF2的面