作业帮 > 数学 > 作业

三角形OFQ的面积为3/2,向量OF=2,向量OF*向量FQ=1,建立坐标系,求以O为中心,F为焦点且过Q的椭圆方程

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 08:25:10
三角形OFQ的面积为3/2,向量OF=2,向量OF*向量FQ=1,建立坐标系,求以O为中心,F为焦点且过Q的椭圆方程
三角形OFQ的面积为3/2,向量OF=2,向量OF*向量FQ=1,建立坐标系,求以O为中心,F为焦点且过Q的椭圆方程
以O为坐标原点,OF所在直线为x轴建立直角坐标系.
F为椭圆一个焦点,Q为椭圆上一点.θ为向量OF,向量FQ之间夹角
△OFQ的面积为S=(1/2)×|OF|×|FQ|×sin(π-θ)
=(1/2)×|OF|×|FQ|×sinθ ,
三角形OFQ的面积为3/2,所以(1/2)×|OF|×|FQ|×sinθ=3/2,
因为向量|OF|=2,所以|FQ|×sinθ=3/2.
向量OF*向量FQ=1=|OF|×|FQ|×cosθ
因为向量|OF|=2,所以|FQ|×cosθ=1/2.
∴点Q的横坐标为2+|FQ|×cosθ=5/2.
点Q的纵坐标为|FQ|×sinθ=3/2.
即Q(5/2,3/2).
由已知得F(2,0),则椭圆的另一个焦点是F’(-2,0),
则2a=|QF|+|QF’|=√10+3√10/2=2√10.a=√10.
所以b=√(a^2-c^2)=√6 ,
所求椭圆方程为:x^2/10+y^2/6=1.