三角形OFQ的面积为3/2,向量OF=2,向量OF*向量FQ=1,建立坐标系,求以O为中心,F为焦点且过Q的椭圆方程
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 08:25:10
三角形OFQ的面积为3/2,向量OF=2,向量OF*向量FQ=1,建立坐标系,求以O为中心,F为焦点且过Q的椭圆方程
以O为坐标原点,OF所在直线为x轴建立直角坐标系.
F为椭圆一个焦点,Q为椭圆上一点.θ为向量OF,向量FQ之间夹角
△OFQ的面积为S=(1/2)×|OF|×|FQ|×sin(π-θ)
=(1/2)×|OF|×|FQ|×sinθ ,
三角形OFQ的面积为3/2,所以(1/2)×|OF|×|FQ|×sinθ=3/2,
因为向量|OF|=2,所以|FQ|×sinθ=3/2.
向量OF*向量FQ=1=|OF|×|FQ|×cosθ
因为向量|OF|=2,所以|FQ|×cosθ=1/2.
∴点Q的横坐标为2+|FQ|×cosθ=5/2.
点Q的纵坐标为|FQ|×sinθ=3/2.
即Q(5/2,3/2).
由已知得F(2,0),则椭圆的另一个焦点是F’(-2,0),
则2a=|QF|+|QF’|=√10+3√10/2=2√10.a=√10.
所以b=√(a^2-c^2)=√6 ,
所求椭圆方程为:x^2/10+y^2/6=1.
F为椭圆一个焦点,Q为椭圆上一点.θ为向量OF,向量FQ之间夹角
△OFQ的面积为S=(1/2)×|OF|×|FQ|×sin(π-θ)
=(1/2)×|OF|×|FQ|×sinθ ,
三角形OFQ的面积为3/2,所以(1/2)×|OF|×|FQ|×sinθ=3/2,
因为向量|OF|=2,所以|FQ|×sinθ=3/2.
向量OF*向量FQ=1=|OF|×|FQ|×cosθ
因为向量|OF|=2,所以|FQ|×cosθ=1/2.
∴点Q的横坐标为2+|FQ|×cosθ=5/2.
点Q的纵坐标为|FQ|×sinθ=3/2.
即Q(5/2,3/2).
由已知得F(2,0),则椭圆的另一个焦点是F’(-2,0),
则2a=|QF|+|QF’|=√10+3√10/2=2√10.a=√10.
所以b=√(a^2-c^2)=√6 ,
所求椭圆方程为:x^2/10+y^2/6=1.
椭圆和向量的综合题已知三角形OFQ的面积为S,且向量OF乘以向量FQ=1.(1)若1/2小于S小于2,求向量OF与向量F
已知三角形OFQ的面积为S,且向量OF与向量FQ的乘积等于1.设|OF|向量的模为C(C>=2)
已知三角形OFQ的面积为2倍根号6,且向量OF乘以向量FQ等于m
已知椭圆x^2/25+y^2/9=1的左焦点为F,点P在椭圆上且向量Q=1/2(向量OP+向量OF),向量OQ的模长=4
P,Q,M,N四点都在椭圆x^2+y^/2=1上,F为椭圆在y轴正半轴上的焦点,已知向量PF与向量FQ共线,向量MF与向
P、Q、M、N四点都在椭圆X平方+Y平方/2=1上,F为椭圆在Y轴正半轴上的焦点.已知:PF向量与FQ向量共线.MF向量
椭圆长轴端点位A,B,O为椭圆中心,F为右焦点,且向量AF乘以向量FB=1,|向量OF|=1(椭圆焦点在X轴上)
PQMN四点都在椭圆x^2+Y^2/2=1上,F为椭圆在Y轴正半轴上的焦点.已知向量PF与向量FQ共线,向量MF与向量F
已知椭圆C的中心为坐标原点O,焦点在X轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A,B两点,向量OA+OB与向量a=(
已知双曲线C中心在原点,焦点在x轴上,右焦点F(c,0),Q为双曲线右支上一点,△OFQ面积为2根号6,向量OF
已知椭圆中心为坐标原点焦点在x轴上,斜率为1且过右焦点F的直线交椭圆于AB两点,向量OA+向量OB与向量a=(3,-1)
1.抛物线C:y的平方=2px(p>0)的焦点为F,过F的直线L与此抛物线C交于P,Q两点,且向量PQ=-2向量FQ