作业帮 > 数学 > 作业

已知点A(0,2)及椭圆x2/4+y2=1,在椭圆上求一点P使|PA|的值最大.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 11:12:10
已知点A(0,2)及椭圆x2/4+y2=1,在椭圆上求一点P使|PA|的值最大.
已知点A(0,2)及椭圆x2/4+y2=1,在椭圆上求一点P使|PA|的值最大.
设P(2cosm,sinm)
|PA|的值最大就是|PA|^2最大
|PA|^2=4cos^2m+sin^2m-2sinm+4
=4-4sin^2m+sin^2m-2sinm+4
=-3sin^2m-2sinm+8
=-3(sin^2m+2sinm/3)+8
=-3(sinm+1/3)^2+8+1/3
当sinm=-1/3时取最大值=25/3
|PA|的值最大=5根3/3